ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthd GIF version

Theorem nn0opthd 10939
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers 𝐴 and 𝐵 by (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3675 that works for any set. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthd.1 (𝜑𝐴 ∈ ℕ0)
nn0opthd.2 (𝜑𝐵 ∈ ℕ0)
nn0opthd.3 (𝜑𝐶 ∈ ℕ0)
nn0opthd.4 (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
nn0opthd (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem nn0opthd
StepHypRef Expression
1 nn0opthd.1 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℕ0)
2 nn0opthd.2 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℕ0)
3 nn0opthd.3 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℕ0)
4 nn0opthd.4 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℕ0)
53, 4nn0addcld 9422 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 + 𝐷) ∈ ℕ0)
61, 2, 5, 4nn0opthlem2d 10938 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 + 𝐵) < (𝐶 + 𝐷) → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)))
76imp 124 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐵) < (𝐶 + 𝐷)) → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))
87necomd 2486 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐵) < (𝐶 + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
98ex 115 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 𝐵) < (𝐶 + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
101, 2nn0addcld 9422 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐵) ∈ ℕ0)
113, 4, 10, 2nn0opthlem2d 10938 . . . . . . . . . . 11 (𝜑 → ((𝐶 + 𝐷) < (𝐴 + 𝐵) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
129, 11jaod 722 . . . . . . . . . 10 (𝜑 → (((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
1310nn0red 9419 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
145nn0red 9419 . . . . . . . . . . 11 (𝜑 → (𝐶 + 𝐷) ∈ ℝ)
15 reaplt 8731 . . . . . . . . . . 11 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐷) ∈ ℝ) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵))))
1613, 14, 15syl2anc 411 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) # (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵))))
1710, 10nn0mulcld 9423 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℕ0)
1817, 2nn0addcld 9422 . . . . . . . . . . . 12 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℕ0)
1918nn0zd 9563 . . . . . . . . . . 11 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℤ)
205, 5nn0mulcld 9423 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 + 𝐷) · (𝐶 + 𝐷)) ∈ ℕ0)
2120, 4nn0addcld 9422 . . . . . . . . . . . 12 (𝜑 → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℕ0)
2221nn0zd 9563 . . . . . . . . . . 11 (𝜑 → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℤ)
23 zapne 9517 . . . . . . . . . . 11 (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℤ ∧ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℤ) → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
2419, 22, 23syl2anc 411 . . . . . . . . . 10 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
2512, 16, 243imtr4d 203 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
2625con3d 634 . . . . . . . 8 (𝜑 → (¬ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → ¬ (𝐴 + 𝐵) # (𝐶 + 𝐷)))
2718nn0cnd 9420 . . . . . . . . 9 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℂ)
2821nn0cnd 9420 . . . . . . . . 9 (𝜑 → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℂ)
29 apti 8765 . . . . . . . . 9 (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℂ ∧ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℂ) → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ ¬ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
3027, 28, 29syl2anc 411 . . . . . . . 8 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ ¬ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
3110nn0cnd 9420 . . . . . . . . 9 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
325nn0cnd 9420 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐷) ∈ ℂ)
33 apti 8765 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ ¬ (𝐴 + 𝐵) # (𝐶 + 𝐷)))
3431, 32, 33syl2anc 411 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ ¬ (𝐴 + 𝐵) # (𝐶 + 𝐷)))
3526, 30, 343imtr4d 203 . . . . . . 7 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷)))
3635imp 124 . . . . . 6 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
37 simpr 110 . . . . . . . . 9 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
3836, 36oveq12d 6018 . . . . . . . . . 10 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = ((𝐶 + 𝐷) · (𝐶 + 𝐷)))
3938oveq1d 6015 . . . . . . . . 9 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
4037, 39eqtr4d 2265 . . . . . . . 8 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷))
4131, 31mulcld 8163 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℂ)
422nn0cnd 9420 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
434nn0cnd 9420 . . . . . . . . . 10 (𝜑𝐷 ∈ ℂ)
4441, 42, 43addcand 8326 . . . . . . . . 9 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) ↔ 𝐵 = 𝐷))
4544adantr 276 . . . . . . . 8 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) ↔ 𝐵 = 𝐷))
4640, 45mpbid 147 . . . . . . 7 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → 𝐵 = 𝐷)
4746oveq2d 6016 . . . . . 6 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐶 + 𝐵) = (𝐶 + 𝐷))
4836, 47eqtr4d 2265 . . . . 5 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐵))
491nn0cnd 9420 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
503nn0cnd 9420 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5149, 50, 42addcan2d 8327 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐶))
5251adantr 276 . . . . 5 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → ((𝐴 + 𝐵) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐶))
5348, 52mpbid 147 . . . 4 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → 𝐴 = 𝐶)
5453, 46jca 306 . . 3 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷))
5554ex 115 . 2 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
56 oveq12 6009 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
5756, 56oveq12d 6018 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = ((𝐶 + 𝐷) · (𝐶 + 𝐷)))
58 simpr 110 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐵 = 𝐷)
5957, 58oveq12d 6018 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
6055, 59impbid1 142 1 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200  wne 2400   class class class wbr 4082  (class class class)co 6000  cc 7993  cr 7994   + caddc 7998   · cmul 8000   < clt 8177   # cap 8724  0cn0 9365  cz 9442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-seqfrec 10665  df-exp 10756
This theorem is referenced by:  nn0opth2d  10940
  Copyright terms: Public domain W3C validator