ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthd GIF version

Theorem nn0opthd 10635
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers 𝐴 and 𝐵 by (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3585 that works for any set. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthd.1 (𝜑𝐴 ∈ ℕ0)
nn0opthd.2 (𝜑𝐵 ∈ ℕ0)
nn0opthd.3 (𝜑𝐶 ∈ ℕ0)
nn0opthd.4 (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
nn0opthd (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem nn0opthd
StepHypRef Expression
1 nn0opthd.1 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℕ0)
2 nn0opthd.2 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℕ0)
3 nn0opthd.3 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℕ0)
4 nn0opthd.4 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℕ0)
53, 4nn0addcld 9171 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 + 𝐷) ∈ ℕ0)
61, 2, 5, 4nn0opthlem2d 10634 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 + 𝐵) < (𝐶 + 𝐷) → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)))
76imp 123 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐵) < (𝐶 + 𝐷)) → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))
87necomd 2422 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐵) < (𝐶 + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
98ex 114 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 𝐵) < (𝐶 + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
101, 2nn0addcld 9171 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐵) ∈ ℕ0)
113, 4, 10, 2nn0opthlem2d 10634 . . . . . . . . . . 11 (𝜑 → ((𝐶 + 𝐷) < (𝐴 + 𝐵) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
129, 11jaod 707 . . . . . . . . . 10 (𝜑 → (((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
1310nn0red 9168 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
145nn0red 9168 . . . . . . . . . . 11 (𝜑 → (𝐶 + 𝐷) ∈ ℝ)
15 reaplt 8486 . . . . . . . . . . 11 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐷) ∈ ℝ) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵))))
1613, 14, 15syl2anc 409 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) # (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵))))
1710, 10nn0mulcld 9172 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℕ0)
1817, 2nn0addcld 9171 . . . . . . . . . . . 12 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℕ0)
1918nn0zd 9311 . . . . . . . . . . 11 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℤ)
205, 5nn0mulcld 9172 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 + 𝐷) · (𝐶 + 𝐷)) ∈ ℕ0)
2120, 4nn0addcld 9171 . . . . . . . . . . . 12 (𝜑 → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℕ0)
2221nn0zd 9311 . . . . . . . . . . 11 (𝜑 → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℤ)
23 zapne 9265 . . . . . . . . . . 11 (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℤ ∧ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℤ) → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
2419, 22, 23syl2anc 409 . . . . . . . . . 10 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
2512, 16, 243imtr4d 202 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
2625con3d 621 . . . . . . . 8 (𝜑 → (¬ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → ¬ (𝐴 + 𝐵) # (𝐶 + 𝐷)))
2718nn0cnd 9169 . . . . . . . . 9 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℂ)
2821nn0cnd 9169 . . . . . . . . 9 (𝜑 → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℂ)
29 apti 8520 . . . . . . . . 9 (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℂ ∧ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℂ) → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ ¬ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
3027, 28, 29syl2anc 409 . . . . . . . 8 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ ¬ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
3110nn0cnd 9169 . . . . . . . . 9 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
325nn0cnd 9169 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐷) ∈ ℂ)
33 apti 8520 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ ¬ (𝐴 + 𝐵) # (𝐶 + 𝐷)))
3431, 32, 33syl2anc 409 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ ¬ (𝐴 + 𝐵) # (𝐶 + 𝐷)))
3526, 30, 343imtr4d 202 . . . . . . 7 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷)))
3635imp 123 . . . . . 6 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
37 simpr 109 . . . . . . . . 9 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
3836, 36oveq12d 5860 . . . . . . . . . 10 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = ((𝐶 + 𝐷) · (𝐶 + 𝐷)))
3938oveq1d 5857 . . . . . . . . 9 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
4037, 39eqtr4d 2201 . . . . . . . 8 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷))
4131, 31mulcld 7919 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℂ)
422nn0cnd 9169 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
434nn0cnd 9169 . . . . . . . . . 10 (𝜑𝐷 ∈ ℂ)
4441, 42, 43addcand 8082 . . . . . . . . 9 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) ↔ 𝐵 = 𝐷))
4544adantr 274 . . . . . . . 8 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) ↔ 𝐵 = 𝐷))
4640, 45mpbid 146 . . . . . . 7 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → 𝐵 = 𝐷)
4746oveq2d 5858 . . . . . 6 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐶 + 𝐵) = (𝐶 + 𝐷))
4836, 47eqtr4d 2201 . . . . 5 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐵))
491nn0cnd 9169 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
503nn0cnd 9169 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5149, 50, 42addcan2d 8083 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐶))
5251adantr 274 . . . . 5 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → ((𝐴 + 𝐵) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐶))
5348, 52mpbid 146 . . . 4 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → 𝐴 = 𝐶)
5453, 46jca 304 . . 3 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷))
5554ex 114 . 2 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
56 oveq12 5851 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
5756, 56oveq12d 5860 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = ((𝐶 + 𝐷) · (𝐶 + 𝐷)))
58 simpr 109 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐵 = 𝐷)
5957, 58oveq12d 5860 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
6055, 59impbid1 141 1 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wcel 2136  wne 2336   class class class wbr 3982  (class class class)co 5842  cc 7751  cr 7752   + caddc 7756   · cmul 7758   < clt 7933   # cap 8479  0cn0 9114  cz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  nn0opth2d  10636
  Copyright terms: Public domain W3C validator