Proof of Theorem nn0opthd
Step | Hyp | Ref
| Expression |
1 | | nn0opthd.1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈
ℕ0) |
2 | | nn0opthd.2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈
ℕ0) |
3 | | nn0opthd.3 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐶 ∈
ℕ0) |
4 | | nn0opthd.4 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐷 ∈
ℕ0) |
5 | 3, 4 | nn0addcld 9171 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶 + 𝐷) ∈
ℕ0) |
6 | 1, 2, 5, 4 | nn0opthlem2d 10634 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐴 + 𝐵) < (𝐶 + 𝐷) → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))) |
7 | 6 | imp 123 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐴 + 𝐵) < (𝐶 + 𝐷)) → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) |
8 | 7 | necomd 2422 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐴 + 𝐵) < (𝐶 + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) |
9 | 8 | ex 114 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐴 + 𝐵) < (𝐶 + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))) |
10 | 1, 2 | nn0addcld 9171 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 + 𝐵) ∈
ℕ0) |
11 | 3, 4, 10, 2 | nn0opthlem2d 10634 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐶 + 𝐷) < (𝐴 + 𝐵) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))) |
12 | 9, 11 | jaod 707 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))) |
13 | 10 | nn0red 9168 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
14 | 5 | nn0red 9168 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 + 𝐷) ∈ ℝ) |
15 | | reaplt 8486 |
. . . . . . . . . . 11
⊢ (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐷) ∈ ℝ) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵)))) |
16 | 13, 14, 15 | syl2anc 409 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 + 𝐵) # (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵)))) |
17 | 10, 10 | nn0mulcld 9172 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈
ℕ0) |
18 | 17, 2 | nn0addcld 9171 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈
ℕ0) |
19 | 18 | nn0zd 9311 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℤ) |
20 | 5, 5 | nn0mulcld 9172 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐶 + 𝐷) · (𝐶 + 𝐷)) ∈
ℕ0) |
21 | 20, 4 | nn0addcld 9171 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈
ℕ0) |
22 | 21 | nn0zd 9311 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℤ) |
23 | | zapne 9265 |
. . . . . . . . . . 11
⊢
(((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℤ ∧ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℤ) → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))) |
24 | 19, 22, 23 | syl2anc 409 |
. . . . . . . . . 10
⊢ (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))) |
25 | 12, 16, 24 | 3imtr4d 202 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))) |
26 | 25 | con3d 621 |
. . . . . . . 8
⊢ (𝜑 → (¬ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → ¬ (𝐴 + 𝐵) # (𝐶 + 𝐷))) |
27 | 18 | nn0cnd 9169 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℂ) |
28 | 21 | nn0cnd 9169 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℂ) |
29 | | apti 8520 |
. . . . . . . . 9
⊢
(((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℂ ∧ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℂ) → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ ¬ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))) |
30 | 27, 28, 29 | syl2anc 409 |
. . . . . . . 8
⊢ (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ ¬ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))) |
31 | 10 | nn0cnd 9169 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
32 | 5 | nn0cnd 9169 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 + 𝐷) ∈ ℂ) |
33 | | apti 8520 |
. . . . . . . . 9
⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ ¬ (𝐴 + 𝐵) # (𝐶 + 𝐷))) |
34 | 31, 32, 33 | syl2anc 409 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ ¬ (𝐴 + 𝐵) # (𝐶 + 𝐷))) |
35 | 26, 30, 34 | 3imtr4d 202 |
. . . . . . 7
⊢ (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷))) |
36 | 35 | imp 123 |
. . . . . 6
⊢ ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐷)) |
37 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) |
38 | 36, 36 | oveq12d 5860 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = ((𝐶 + 𝐷) · (𝐶 + 𝐷))) |
39 | 38 | oveq1d 5857 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) |
40 | 37, 39 | eqtr4d 2201 |
. . . . . . . 8
⊢ ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷)) |
41 | 31, 31 | mulcld 7919 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℂ) |
42 | 2 | nn0cnd 9169 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℂ) |
43 | 4 | nn0cnd 9169 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ ℂ) |
44 | 41, 42, 43 | addcand 8082 |
. . . . . . . . 9
⊢ (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) ↔ 𝐵 = 𝐷)) |
45 | 44 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) ↔ 𝐵 = 𝐷)) |
46 | 40, 45 | mpbid 146 |
. . . . . . 7
⊢ ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → 𝐵 = 𝐷) |
47 | 46 | oveq2d 5858 |
. . . . . 6
⊢ ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐶 + 𝐵) = (𝐶 + 𝐷)) |
48 | 36, 47 | eqtr4d 2201 |
. . . . 5
⊢ ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐵)) |
49 | 1 | nn0cnd 9169 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℂ) |
50 | 3 | nn0cnd 9169 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℂ) |
51 | 49, 50, 42 | addcan2d 8083 |
. . . . . 6
⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐶)) |
52 | 51 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → ((𝐴 + 𝐵) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐶)) |
53 | 48, 52 | mpbid 146 |
. . . 4
⊢ ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → 𝐴 = 𝐶) |
54 | 53, 46 | jca 304 |
. . 3
⊢ ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
55 | 54 | ex 114 |
. 2
⊢ (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
56 | | oveq12 5851 |
. . . 4
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷)) |
57 | 56, 56 | oveq12d 5860 |
. . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = ((𝐶 + 𝐷) · (𝐶 + 𝐷))) |
58 | | simpr 109 |
. . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐵 = 𝐷) |
59 | 57, 58 | oveq12d 5860 |
. 2
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) |
60 | 55, 59 | impbid1 141 |
1
⊢ (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |