ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthd GIF version

Theorem nn0opthd 10500
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers 𝐴 and 𝐵 by (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3541 that works for any set. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthd.1 (𝜑𝐴 ∈ ℕ0)
nn0opthd.2 (𝜑𝐵 ∈ ℕ0)
nn0opthd.3 (𝜑𝐶 ∈ ℕ0)
nn0opthd.4 (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
nn0opthd (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem nn0opthd
StepHypRef Expression
1 nn0opthd.1 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℕ0)
2 nn0opthd.2 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℕ0)
3 nn0opthd.3 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℕ0)
4 nn0opthd.4 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℕ0)
53, 4nn0addcld 9058 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 + 𝐷) ∈ ℕ0)
61, 2, 5, 4nn0opthlem2d 10499 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 + 𝐵) < (𝐶 + 𝐷) → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)))
76imp 123 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐵) < (𝐶 + 𝐷)) → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))
87necomd 2395 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐵) < (𝐶 + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
98ex 114 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 𝐵) < (𝐶 + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
101, 2nn0addcld 9058 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐵) ∈ ℕ0)
113, 4, 10, 2nn0opthlem2d 10499 . . . . . . . . . . 11 (𝜑 → ((𝐶 + 𝐷) < (𝐴 + 𝐵) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
129, 11jaod 707 . . . . . . . . . 10 (𝜑 → (((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
1310nn0red 9055 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
145nn0red 9055 . . . . . . . . . . 11 (𝜑 → (𝐶 + 𝐷) ∈ ℝ)
15 reaplt 8374 . . . . . . . . . . 11 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐷) ∈ ℝ) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵))))
1613, 14, 15syl2anc 409 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) # (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵))))
1710, 10nn0mulcld 9059 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℕ0)
1817, 2nn0addcld 9058 . . . . . . . . . . . 12 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℕ0)
1918nn0zd 9195 . . . . . . . . . . 11 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℤ)
205, 5nn0mulcld 9059 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 + 𝐷) · (𝐶 + 𝐷)) ∈ ℕ0)
2120, 4nn0addcld 9058 . . . . . . . . . . . 12 (𝜑 → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℕ0)
2221nn0zd 9195 . . . . . . . . . . 11 (𝜑 → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℤ)
23 zapne 9149 . . . . . . . . . . 11 (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℤ ∧ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℤ) → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
2419, 22, 23syl2anc 409 . . . . . . . . . 10 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
2512, 16, 243imtr4d 202 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
2625con3d 621 . . . . . . . 8 (𝜑 → (¬ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → ¬ (𝐴 + 𝐵) # (𝐶 + 𝐷)))
2718nn0cnd 9056 . . . . . . . . 9 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℂ)
2821nn0cnd 9056 . . . . . . . . 9 (𝜑 → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℂ)
29 apti 8408 . . . . . . . . 9 (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℂ ∧ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ∈ ℂ) → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ ¬ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
3027, 28, 29syl2anc 409 . . . . . . . 8 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ ¬ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) # (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)))
3110nn0cnd 9056 . . . . . . . . 9 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
325nn0cnd 9056 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐷) ∈ ℂ)
33 apti 8408 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ ¬ (𝐴 + 𝐵) # (𝐶 + 𝐷)))
3431, 32, 33syl2anc 409 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ ¬ (𝐴 + 𝐵) # (𝐶 + 𝐷)))
3526, 30, 343imtr4d 202 . . . . . . 7 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷)))
3635imp 123 . . . . . 6 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
37 simpr 109 . . . . . . . . 9 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
3836, 36oveq12d 5800 . . . . . . . . . 10 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = ((𝐶 + 𝐷) · (𝐶 + 𝐷)))
3938oveq1d 5797 . . . . . . . . 9 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
4037, 39eqtr4d 2176 . . . . . . . 8 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷))
4131, 31mulcld 7810 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℂ)
422nn0cnd 9056 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
434nn0cnd 9056 . . . . . . . . . 10 (𝜑𝐷 ∈ ℂ)
4441, 42, 43addcand 7970 . . . . . . . . 9 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) ↔ 𝐵 = 𝐷))
4544adantr 274 . . . . . . . 8 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) ↔ 𝐵 = 𝐷))
4640, 45mpbid 146 . . . . . . 7 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → 𝐵 = 𝐷)
4746oveq2d 5798 . . . . . 6 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐶 + 𝐵) = (𝐶 + 𝐷))
4836, 47eqtr4d 2176 . . . . 5 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐵))
491nn0cnd 9056 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
503nn0cnd 9056 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5149, 50, 42addcan2d 7971 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐶))
5251adantr 274 . . . . 5 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → ((𝐴 + 𝐵) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐶))
5348, 52mpbid 146 . . . 4 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → 𝐴 = 𝐶)
5453, 46jca 304 . . 3 ((𝜑 ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷))
5554ex 114 . 2 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
56 oveq12 5791 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
5756, 56oveq12d 5800 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = ((𝐶 + 𝐷) · (𝐶 + 𝐷)))
58 simpr 109 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐵 = 𝐷)
5957, 58oveq12d 5800 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
6055, 59impbid1 141 1 (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698   = wceq 1332  wcel 1481  wne 2309   class class class wbr 3937  (class class class)co 5782  cc 7642  cr 7643   + caddc 7647   · cmul 7649   < clt 7824   # cap 8367  0cn0 9001  cz 9078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-seqfrec 10250  df-exp 10324
This theorem is referenced by:  nn0opth2d  10501
  Copyright terms: Public domain W3C validator