ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omelon GIF version

Theorem omelon 4678
Description: Omega is an ordinal number. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.)
Assertion
Ref Expression
omelon ω ∈ On

Proof of Theorem omelon
StepHypRef Expression
1 omex 4662 . 2 ω ∈ V
2 omelon2 4677 . 2 (ω ∈ V → ω ∈ On)
31, 2ax-mp 5 1 ω ∈ On
Colors of variables: wff set class
Syntax hints:  wcel 2180  Vcvv 2779  Oncon0 4431  ωcom 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-uni 3868  df-int 3903  df-tr 4162  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660
This theorem is referenced by:  nnon  4679  omp1eomlem  7229  enumctlemm  7249  ennnfonelemdc  12936  ctinfom  12965  2o01f  16269  isomninnlem  16309  iswomninnlem  16328  ismkvnnlem  16331
  Copyright terms: Public domain W3C validator