ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnsnop GIF version

Theorem rnsnop 5084
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
cnvsn.1 𝐴 ∈ V
Assertion
Ref Expression
rnsnop ran {⟨𝐴, 𝐵⟩} = {𝐵}

Proof of Theorem rnsnop
StepHypRef Expression
1 cnvsn.1 . 2 𝐴 ∈ V
2 rnsnopg 5082 . 2 (𝐴 ∈ V → ran {⟨𝐴, 𝐵⟩} = {𝐵})
31, 2ax-mp 5 1 ran {⟨𝐴, 𝐵⟩} = {𝐵}
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  Vcvv 2726  {csn 3576  cop 3579  ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  op2nda  5088  fpr  5667  en1  6765
  Copyright terms: Public domain W3C validator