ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmcl GIF version

Theorem mgmcl 12783
Description: Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 13-Jan-2020.)
Hypotheses
Ref Expression
mgmcl.b 𝐵 = (Base‘𝑀)
mgmcl.o = (+g𝑀)
Assertion
Ref Expression
mgmcl ((𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)

Proof of Theorem mgmcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmcl.b . . . . 5 𝐵 = (Base‘𝑀)
2 mgmcl.o . . . . 5 = (+g𝑀)
31, 2ismgm 12781 . . . 4 (𝑀 ∈ Mgm → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
43ibi 176 . . 3 (𝑀 ∈ Mgm → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵)
5 ovrspc2v 5903 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵) → (𝑋 𝑌) ∈ 𝐵)
65expcom 116 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵 → ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵))
74, 6syl 14 . 2 (𝑀 ∈ Mgm → ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵))
873impib 1201 1 ((𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  wral 2455  cfv 5218  (class class class)co 5877  Basecbs 12464  +gcplusg 12538  Mgmcmgm 12778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-mgm 12780
This theorem is referenced by:  isnmgm  12784  mgmsscl  12785  mgmplusf  12790  mndcl  12829  dfgrp2  12907  dfgrp3me  12975  mulgnncl  13003  mulgnndir  13017
  Copyright terms: Public domain W3C validator