ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercpbl GIF version

Theorem ercpbl 13207
Description: Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
ercpbl.c ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎 + 𝑏) ∈ 𝑉)
ercpbl.e (𝜑 → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
Assertion
Ref Expression
ercpbl ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷))))
Distinct variable groups:   𝑥,   𝑎,𝑏,𝑥,𝐴   𝐵,𝑏,𝑥   𝑥,𝐶   𝑥,𝐷   𝑉,𝑎,𝑏,𝑥   + ,𝑎,𝑏,𝑥   𝜑,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑎)   𝐶(𝑎,𝑏)   𝐷(𝑎,𝑏)   (𝑎,𝑏)   𝐹(𝑥,𝑎,𝑏)   𝑊(𝑥,𝑎,𝑏)

Proof of Theorem ercpbl
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ercpbl.e . . 3 (𝜑 → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
213ad2ant1 1021 . 2 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
3 ercpbl.r . . . . 5 (𝜑 Er 𝑉)
433ad2ant1 1021 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → Er 𝑉)
5 ercpbl.v . . . . 5 (𝜑𝑉𝑊)
653ad2ant1 1021 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝑉𝑊)
7 ercpbl.f . . . 4 𝐹 = (𝑥𝑉 ↦ [𝑥] )
8 simp2l 1026 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐴𝑉)
9 simp3l 1028 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐶𝑉)
104, 6, 7, 8, 9ercpbllemg 13206 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐹𝐴) = (𝐹𝐶) ↔ 𝐴 𝐶))
11 simp2r 1027 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐵𝑉)
12 simp3r 1029 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐷𝑉)
134, 6, 7, 11, 12ercpbllemg 13206 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐹𝐵) = (𝐹𝐷) ↔ 𝐵 𝐷))
1410, 13anbi12d 473 . 2 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) ↔ (𝐴 𝐶𝐵 𝐷)))
15 ercpbl.c . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎 + 𝑏) ∈ 𝑉)
1615caovclg 6106 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉)) → (𝐴 + 𝐵) ∈ 𝑉)
17163adant3 1020 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (𝐴 + 𝐵) ∈ 𝑉)
18 simprl 529 . . . . 5 ((𝜑 ∧ (𝐶𝑉𝐷𝑉)) → 𝐶𝑉)
19 simprr 531 . . . . 5 ((𝜑 ∧ (𝐶𝑉𝐷𝑉)) → 𝐷𝑉)
2015ralrimivva 2589 . . . . . . 7 (𝜑 → ∀𝑎𝑉𝑏𝑉 (𝑎 + 𝑏) ∈ 𝑉)
21 oveq1 5958 . . . . . . . . 9 (𝑎 = 𝑐 → (𝑎 + 𝑏) = (𝑐 + 𝑏))
2221eleq1d 2275 . . . . . . . 8 (𝑎 = 𝑐 → ((𝑎 + 𝑏) ∈ 𝑉 ↔ (𝑐 + 𝑏) ∈ 𝑉))
23 oveq2 5959 . . . . . . . . 9 (𝑏 = 𝑑 → (𝑐 + 𝑏) = (𝑐 + 𝑑))
2423eleq1d 2275 . . . . . . . 8 (𝑏 = 𝑑 → ((𝑐 + 𝑏) ∈ 𝑉 ↔ (𝑐 + 𝑑) ∈ 𝑉))
2522, 24cbvral2v 2752 . . . . . . 7 (∀𝑎𝑉𝑏𝑉 (𝑎 + 𝑏) ∈ 𝑉 ↔ ∀𝑐𝑉𝑑𝑉 (𝑐 + 𝑑) ∈ 𝑉)
2620, 25sylib 122 . . . . . 6 (𝜑 → ∀𝑐𝑉𝑑𝑉 (𝑐 + 𝑑) ∈ 𝑉)
2726adantr 276 . . . . 5 ((𝜑 ∧ (𝐶𝑉𝐷𝑉)) → ∀𝑐𝑉𝑑𝑉 (𝑐 + 𝑑) ∈ 𝑉)
28 ovrspc2v 5977 . . . . 5 (((𝐶𝑉𝐷𝑉) ∧ ∀𝑐𝑉𝑑𝑉 (𝑐 + 𝑑) ∈ 𝑉) → (𝐶 + 𝐷) ∈ 𝑉)
2918, 19, 27, 28syl21anc 1249 . . . 4 ((𝜑 ∧ (𝐶𝑉𝐷𝑉)) → (𝐶 + 𝐷) ∈ 𝑉)
30293adant2 1019 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (𝐶 + 𝐷) ∈ 𝑉)
314, 6, 7, 17, 30ercpbllemg 13206 . 2 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷)) ↔ (𝐴 + 𝐵) (𝐶 + 𝐷)))
322, 14, 313imtr4d 203 1 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wral 2485   class class class wbr 4047  cmpt 4109  cfv 5276  (class class class)co 5951   Er wer 6624  [cec 6625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fv 5284  df-ov 5954  df-er 6627  df-ec 6629
This theorem is referenced by:  qusaddvallemg  13209  qusaddflemg  13210  qusgrp2  13493  qusrng  13764  qusring2  13872
  Copyright terms: Public domain W3C validator