ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercpbl GIF version

Theorem ercpbl 12768
Description: Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
ercpbl.c ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎 + 𝑏) ∈ 𝑉)
ercpbl.e (𝜑 → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
Assertion
Ref Expression
ercpbl ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷))))
Distinct variable groups:   𝑥,   𝑎,𝑏,𝑥,𝐴   𝐵,𝑏,𝑥   𝑥,𝐶   𝑥,𝐷   𝑉,𝑎,𝑏,𝑥   + ,𝑎,𝑏,𝑥   𝜑,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑎)   𝐶(𝑎,𝑏)   𝐷(𝑎,𝑏)   (𝑎,𝑏)   𝐹(𝑥,𝑎,𝑏)   𝑊(𝑥,𝑎,𝑏)

Proof of Theorem ercpbl
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ercpbl.e . . 3 (𝜑 → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
213ad2ant1 1019 . 2 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
3 ercpbl.r . . . . 5 (𝜑 Er 𝑉)
433ad2ant1 1019 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → Er 𝑉)
5 ercpbl.v . . . . 5 (𝜑𝑉𝑊)
653ad2ant1 1019 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝑉𝑊)
7 ercpbl.f . . . 4 𝐹 = (𝑥𝑉 ↦ [𝑥] )
8 simp2l 1024 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐴𝑉)
9 simp3l 1026 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐶𝑉)
104, 6, 7, 8, 9ercpbllemg 12767 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐹𝐴) = (𝐹𝐶) ↔ 𝐴 𝐶))
11 simp2r 1025 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐵𝑉)
12 simp3r 1027 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐷𝑉)
134, 6, 7, 11, 12ercpbllemg 12767 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐹𝐵) = (𝐹𝐷) ↔ 𝐵 𝐷))
1410, 13anbi12d 473 . 2 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) ↔ (𝐴 𝐶𝐵 𝐷)))
15 ercpbl.c . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎 + 𝑏) ∈ 𝑉)
1615caovclg 6040 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉)) → (𝐴 + 𝐵) ∈ 𝑉)
17163adant3 1018 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (𝐴 + 𝐵) ∈ 𝑉)
18 simprl 529 . . . . 5 ((𝜑 ∧ (𝐶𝑉𝐷𝑉)) → 𝐶𝑉)
19 simprr 531 . . . . 5 ((𝜑 ∧ (𝐶𝑉𝐷𝑉)) → 𝐷𝑉)
2015ralrimivva 2569 . . . . . . 7 (𝜑 → ∀𝑎𝑉𝑏𝑉 (𝑎 + 𝑏) ∈ 𝑉)
21 oveq1 5895 . . . . . . . . 9 (𝑎 = 𝑐 → (𝑎 + 𝑏) = (𝑐 + 𝑏))
2221eleq1d 2256 . . . . . . . 8 (𝑎 = 𝑐 → ((𝑎 + 𝑏) ∈ 𝑉 ↔ (𝑐 + 𝑏) ∈ 𝑉))
23 oveq2 5896 . . . . . . . . 9 (𝑏 = 𝑑 → (𝑐 + 𝑏) = (𝑐 + 𝑑))
2423eleq1d 2256 . . . . . . . 8 (𝑏 = 𝑑 → ((𝑐 + 𝑏) ∈ 𝑉 ↔ (𝑐 + 𝑑) ∈ 𝑉))
2522, 24cbvral2v 2728 . . . . . . 7 (∀𝑎𝑉𝑏𝑉 (𝑎 + 𝑏) ∈ 𝑉 ↔ ∀𝑐𝑉𝑑𝑉 (𝑐 + 𝑑) ∈ 𝑉)
2620, 25sylib 122 . . . . . 6 (𝜑 → ∀𝑐𝑉𝑑𝑉 (𝑐 + 𝑑) ∈ 𝑉)
2726adantr 276 . . . . 5 ((𝜑 ∧ (𝐶𝑉𝐷𝑉)) → ∀𝑐𝑉𝑑𝑉 (𝑐 + 𝑑) ∈ 𝑉)
28 ovrspc2v 5914 . . . . 5 (((𝐶𝑉𝐷𝑉) ∧ ∀𝑐𝑉𝑑𝑉 (𝑐 + 𝑑) ∈ 𝑉) → (𝐶 + 𝐷) ∈ 𝑉)
2918, 19, 27, 28syl21anc 1247 . . . 4 ((𝜑 ∧ (𝐶𝑉𝐷𝑉)) → (𝐶 + 𝐷) ∈ 𝑉)
30293adant2 1017 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (𝐶 + 𝐷) ∈ 𝑉)
314, 6, 7, 17, 30ercpbllemg 12767 . 2 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷)) ↔ (𝐴 + 𝐵) (𝐶 + 𝐷)))
322, 14, 313imtr4d 203 1 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 979   = wceq 1363  wcel 2158  wral 2465   class class class wbr 4015  cmpt 4076  cfv 5228  (class class class)co 5888   Er wer 6545  [cec 6546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fv 5236  df-ov 5891  df-er 6548  df-ec 6550
This theorem is referenced by:  qusaddvallemg  12770  qusaddflemg  12771  qusgrp2  13007  qusring2  13309
  Copyright terms: Public domain W3C validator