ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercpbl GIF version

Theorem ercpbl 13330
Description: Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
ercpbl.c ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎 + 𝑏) ∈ 𝑉)
ercpbl.e (𝜑 → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
Assertion
Ref Expression
ercpbl ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷))))
Distinct variable groups:   𝑥,   𝑎,𝑏,𝑥,𝐴   𝐵,𝑏,𝑥   𝑥,𝐶   𝑥,𝐷   𝑉,𝑎,𝑏,𝑥   + ,𝑎,𝑏,𝑥   𝜑,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑎)   𝐶(𝑎,𝑏)   𝐷(𝑎,𝑏)   (𝑎,𝑏)   𝐹(𝑥,𝑎,𝑏)   𝑊(𝑥,𝑎,𝑏)

Proof of Theorem ercpbl
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ercpbl.e . . 3 (𝜑 → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
213ad2ant1 1023 . 2 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
3 ercpbl.r . . . . 5 (𝜑 Er 𝑉)
433ad2ant1 1023 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → Er 𝑉)
5 ercpbl.v . . . . 5 (𝜑𝑉𝑊)
653ad2ant1 1023 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝑉𝑊)
7 ercpbl.f . . . 4 𝐹 = (𝑥𝑉 ↦ [𝑥] )
8 simp2l 1028 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐴𝑉)
9 simp3l 1030 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐶𝑉)
104, 6, 7, 8, 9ercpbllemg 13329 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐹𝐴) = (𝐹𝐶) ↔ 𝐴 𝐶))
11 simp2r 1029 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐵𝑉)
12 simp3r 1031 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐷𝑉)
134, 6, 7, 11, 12ercpbllemg 13329 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐹𝐵) = (𝐹𝐷) ↔ 𝐵 𝐷))
1410, 13anbi12d 473 . 2 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) ↔ (𝐴 𝐶𝐵 𝐷)))
15 ercpbl.c . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎 + 𝑏) ∈ 𝑉)
1615caovclg 6129 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉)) → (𝐴 + 𝐵) ∈ 𝑉)
17163adant3 1022 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (𝐴 + 𝐵) ∈ 𝑉)
18 simprl 529 . . . . 5 ((𝜑 ∧ (𝐶𝑉𝐷𝑉)) → 𝐶𝑉)
19 simprr 531 . . . . 5 ((𝜑 ∧ (𝐶𝑉𝐷𝑉)) → 𝐷𝑉)
2015ralrimivva 2592 . . . . . . 7 (𝜑 → ∀𝑎𝑉𝑏𝑉 (𝑎 + 𝑏) ∈ 𝑉)
21 oveq1 5981 . . . . . . . . 9 (𝑎 = 𝑐 → (𝑎 + 𝑏) = (𝑐 + 𝑏))
2221eleq1d 2278 . . . . . . . 8 (𝑎 = 𝑐 → ((𝑎 + 𝑏) ∈ 𝑉 ↔ (𝑐 + 𝑏) ∈ 𝑉))
23 oveq2 5982 . . . . . . . . 9 (𝑏 = 𝑑 → (𝑐 + 𝑏) = (𝑐 + 𝑑))
2423eleq1d 2278 . . . . . . . 8 (𝑏 = 𝑑 → ((𝑐 + 𝑏) ∈ 𝑉 ↔ (𝑐 + 𝑑) ∈ 𝑉))
2522, 24cbvral2v 2758 . . . . . . 7 (∀𝑎𝑉𝑏𝑉 (𝑎 + 𝑏) ∈ 𝑉 ↔ ∀𝑐𝑉𝑑𝑉 (𝑐 + 𝑑) ∈ 𝑉)
2620, 25sylib 122 . . . . . 6 (𝜑 → ∀𝑐𝑉𝑑𝑉 (𝑐 + 𝑑) ∈ 𝑉)
2726adantr 276 . . . . 5 ((𝜑 ∧ (𝐶𝑉𝐷𝑉)) → ∀𝑐𝑉𝑑𝑉 (𝑐 + 𝑑) ∈ 𝑉)
28 ovrspc2v 6000 . . . . 5 (((𝐶𝑉𝐷𝑉) ∧ ∀𝑐𝑉𝑑𝑉 (𝑐 + 𝑑) ∈ 𝑉) → (𝐶 + 𝐷) ∈ 𝑉)
2918, 19, 27, 28syl21anc 1251 . . . 4 ((𝜑 ∧ (𝐶𝑉𝐷𝑉)) → (𝐶 + 𝐷) ∈ 𝑉)
30293adant2 1021 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (𝐶 + 𝐷) ∈ 𝑉)
314, 6, 7, 17, 30ercpbllemg 13329 . 2 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷)) ↔ (𝐴 + 𝐵) (𝐶 + 𝐷)))
322, 14, 313imtr4d 203 1 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  wral 2488   class class class wbr 4062  cmpt 4124  cfv 5294  (class class class)co 5974   Er wer 6647  [cec 6648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fv 5302  df-ov 5977  df-er 6650  df-ec 6652
This theorem is referenced by:  qusaddvallemg  13332  qusaddflemg  13333  qusgrp2  13616  qusrng  13887  qusring2  13995
  Copyright terms: Public domain W3C validator