Step | Hyp | Ref
| Expression |
1 | | ercpbl.e |
. . 3
⊢ (𝜑 → ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴 + 𝐵) ∼ (𝐶 + 𝐷))) |
2 | 1 | 3ad2ant1 1018 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴 + 𝐵) ∼ (𝐶 + 𝐷))) |
3 | | ercpbl.r |
. . . . 5
⊢ (𝜑 → ∼ Er 𝑉) |
4 | 3 | 3ad2ant1 1018 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ∼ Er 𝑉) |
5 | | ercpbl.v |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ 𝑊) |
6 | 5 | 3ad2ant1 1018 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝑉 ∈ 𝑊) |
7 | | ercpbl.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
8 | | simp2l 1023 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐴 ∈ 𝑉) |
9 | | simp3l 1025 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐶 ∈ 𝑉) |
10 | 4, 6, 7, 8, 9 | ercpbllemg 12748 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐹‘𝐴) = (𝐹‘𝐶) ↔ 𝐴 ∼ 𝐶)) |
11 | | simp2r 1024 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐵 ∈ 𝑉) |
12 | | simp3r 1026 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐷 ∈ 𝑉) |
13 | 4, 6, 7, 11, 12 | ercpbllemg 12748 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐹‘𝐵) = (𝐹‘𝐷) ↔ 𝐵 ∼ 𝐷)) |
14 | 10, 13 | anbi12d 473 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) ↔ (𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷))) |
15 | | ercpbl.c |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎 + 𝑏) ∈ 𝑉) |
16 | 15 | caovclg 6026 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐴 + 𝐵) ∈ 𝑉) |
17 | 16 | 3adant3 1017 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐴 + 𝐵) ∈ 𝑉) |
18 | | simprl 529 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐶 ∈ 𝑉) |
19 | | simprr 531 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐷 ∈ 𝑉) |
20 | 15 | ralrimivva 2559 |
. . . . . . 7
⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑎 + 𝑏) ∈ 𝑉) |
21 | | oveq1 5881 |
. . . . . . . . 9
⊢ (𝑎 = 𝑐 → (𝑎 + 𝑏) = (𝑐 + 𝑏)) |
22 | 21 | eleq1d 2246 |
. . . . . . . 8
⊢ (𝑎 = 𝑐 → ((𝑎 + 𝑏) ∈ 𝑉 ↔ (𝑐 + 𝑏) ∈ 𝑉)) |
23 | | oveq2 5882 |
. . . . . . . . 9
⊢ (𝑏 = 𝑑 → (𝑐 + 𝑏) = (𝑐 + 𝑑)) |
24 | 23 | eleq1d 2246 |
. . . . . . . 8
⊢ (𝑏 = 𝑑 → ((𝑐 + 𝑏) ∈ 𝑉 ↔ (𝑐 + 𝑑) ∈ 𝑉)) |
25 | 22, 24 | cbvral2v 2716 |
. . . . . . 7
⊢
(∀𝑎 ∈
𝑉 ∀𝑏 ∈ 𝑉 (𝑎 + 𝑏) ∈ 𝑉 ↔ ∀𝑐 ∈ 𝑉 ∀𝑑 ∈ 𝑉 (𝑐 + 𝑑) ∈ 𝑉) |
26 | 20, 25 | sylib 122 |
. . . . . 6
⊢ (𝜑 → ∀𝑐 ∈ 𝑉 ∀𝑑 ∈ 𝑉 (𝑐 + 𝑑) ∈ 𝑉) |
27 | 26 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ∀𝑐 ∈ 𝑉 ∀𝑑 ∈ 𝑉 (𝑐 + 𝑑) ∈ 𝑉) |
28 | | ovrspc2v 5900 |
. . . . 5
⊢ (((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) ∧ ∀𝑐 ∈ 𝑉 ∀𝑑 ∈ 𝑉 (𝑐 + 𝑑) ∈ 𝑉) → (𝐶 + 𝐷) ∈ 𝑉) |
29 | 18, 19, 27, 28 | syl21anc 1237 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐶 + 𝐷) ∈ 𝑉) |
30 | 29 | 3adant2 1016 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐶 + 𝐷) ∈ 𝑉) |
31 | 4, 6, 7, 17, 30 | ercpbllemg 12748 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷)) ↔ (𝐴 + 𝐵) ∼ (𝐶 + 𝐷))) |
32 | 2, 14, 31 | 3imtr4d 203 |
1
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷)))) |