ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgrppropd GIF version

Theorem sgrppropd 12873
Description: If two structures are sets, have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a semigroup iff the other one is. (Contributed by AV, 15-Feb-2025.)
Hypotheses
Ref Expression
sgrppropd.k (𝜑𝐾𝑉)
sgrppropd.l (𝜑𝐿𝑊)
sgrppropd.1 (𝜑𝐵 = (Base‘𝐾))
sgrppropd.2 (𝜑𝐵 = (Base‘𝐿))
sgrppropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
sgrppropd (𝜑 → (𝐾 ∈ Smgrp ↔ 𝐿 ∈ Smgrp))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem sgrppropd
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . . 6 (((𝜑𝐾 ∈ Smgrp) ∧ (𝑥𝐵𝑦𝐵)) → 𝐾 ∈ Smgrp)
2 simprl 529 . . . . . . 7 (((𝜑𝐾 ∈ Smgrp) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
3 sgrppropd.1 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐾))
43ad2antrr 488 . . . . . . 7 (((𝜑𝐾 ∈ Smgrp) ∧ (𝑥𝐵𝑦𝐵)) → 𝐵 = (Base‘𝐾))
52, 4eleqtrd 2268 . . . . . 6 (((𝜑𝐾 ∈ Smgrp) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ (Base‘𝐾))
6 simprr 531 . . . . . . 7 (((𝜑𝐾 ∈ Smgrp) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
76, 4eleqtrd 2268 . . . . . 6 (((𝜑𝐾 ∈ Smgrp) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ (Base‘𝐾))
8 eqid 2189 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
9 eqid 2189 . . . . . . 7 (+g𝐾) = (+g𝐾)
108, 9sgrpcl 12869 . . . . . 6 ((𝐾 ∈ Smgrp ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))
111, 5, 7, 10syl3anc 1249 . . . . 5 (((𝜑𝐾 ∈ Smgrp) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))
1211, 4eleqtrrd 2269 . . . 4 (((𝜑𝐾 ∈ Smgrp) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) ∈ 𝐵)
1312ralrimivva 2572 . . 3 ((𝜑𝐾 ∈ Smgrp) → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵)
1413ex 115 . 2 (𝜑 → (𝐾 ∈ Smgrp → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵))
15 simplr 528 . . . . . 6 (((𝜑𝐿 ∈ Smgrp) ∧ (𝑥𝐵𝑦𝐵)) → 𝐿 ∈ Smgrp)
16 simprl 529 . . . . . . 7 (((𝜑𝐿 ∈ Smgrp) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
17 sgrppropd.2 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐿))
1817ad2antrr 488 . . . . . . 7 (((𝜑𝐿 ∈ Smgrp) ∧ (𝑥𝐵𝑦𝐵)) → 𝐵 = (Base‘𝐿))
1916, 18eleqtrd 2268 . . . . . 6 (((𝜑𝐿 ∈ Smgrp) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ (Base‘𝐿))
20 simprr 531 . . . . . . 7 (((𝜑𝐿 ∈ Smgrp) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
2120, 18eleqtrd 2268 . . . . . 6 (((𝜑𝐿 ∈ Smgrp) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ (Base‘𝐿))
22 eqid 2189 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
23 eqid 2189 . . . . . . 7 (+g𝐿) = (+g𝐿)
2422, 23sgrpcl 12869 . . . . . 6 ((𝐿 ∈ Smgrp ∧ 𝑥 ∈ (Base‘𝐿) ∧ 𝑦 ∈ (Base‘𝐿)) → (𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))
2515, 19, 21, 24syl3anc 1249 . . . . 5 (((𝜑𝐿 ∈ Smgrp) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))
26 sgrppropd.3 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
2726adantlr 477 . . . . 5 (((𝜑𝐿 ∈ Smgrp) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
2825, 27, 183eltr4d 2273 . . . 4 (((𝜑𝐿 ∈ Smgrp) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) ∈ 𝐵)
2928ralrimivva 2572 . . 3 ((𝜑𝐿 ∈ Smgrp) → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵)
3029ex 115 . 2 (𝜑 → (𝐿 ∈ Smgrp → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵))
31 sgrppropd.k . . . . . 6 (𝜑𝐾𝑉)
328, 9issgrpv 12864 . . . . . 6 (𝐾𝑉 → (𝐾 ∈ Smgrp ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)))))
3331, 32syl 14 . . . . 5 (𝜑 → (𝐾 ∈ Smgrp ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)))))
3433adantr 276 . . . 4 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (𝐾 ∈ Smgrp ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)))))
3526oveqrspc2v 5922 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
3635adantlr 477 . . . . . . . 8 (((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
3736eleq1d 2258 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) → ((𝑢(+g𝐾)𝑣) ∈ 𝐵 ↔ (𝑢(+g𝐿)𝑣) ∈ 𝐵))
38 simplll 533 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → 𝜑)
39 simplrl 535 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → 𝑢𝐵)
40 simplrr 536 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → 𝑣𝐵)
41 simpllr 534 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵)
42 ovrspc2v 5921 . . . . . . . . . . . 12 (((𝑢𝐵𝑣𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (𝑢(+g𝐾)𝑣) ∈ 𝐵)
4339, 40, 41, 42syl21anc 1248 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑢(+g𝐾)𝑣) ∈ 𝐵)
44 simpr 110 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → 𝑤𝐵)
4526oveqrspc2v 5922 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑢(+g𝐾)𝑣) ∈ 𝐵𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = ((𝑢(+g𝐾)𝑣)(+g𝐿)𝑤))
4638, 43, 44, 45syl12anc 1247 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = ((𝑢(+g𝐾)𝑣)(+g𝐿)𝑤))
4738, 39, 40, 35syl12anc 1247 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
4847oveq1d 5910 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → ((𝑢(+g𝐾)𝑣)(+g𝐿)𝑤) = ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤))
4946, 48eqtrd 2222 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤))
50 ovrspc2v 5921 . . . . . . . . . . . 12 (((𝑣𝐵𝑤𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (𝑣(+g𝐾)𝑤) ∈ 𝐵)
5140, 44, 41, 50syl21anc 1248 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑣(+g𝐾)𝑤) ∈ 𝐵)
5226oveqrspc2v 5922 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝐵 ∧ (𝑣(+g𝐾)𝑤) ∈ 𝐵)) → (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(+g𝐿)(𝑣(+g𝐾)𝑤)))
5338, 39, 51, 52syl12anc 1247 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(+g𝐿)(𝑣(+g𝐾)𝑤)))
5426oveqrspc2v 5922 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣𝐵𝑤𝐵)) → (𝑣(+g𝐾)𝑤) = (𝑣(+g𝐿)𝑤))
5538, 40, 44, 54syl12anc 1247 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑣(+g𝐾)𝑤) = (𝑣(+g𝐿)𝑤))
5655oveq2d 5911 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑢(+g𝐿)(𝑣(+g𝐾)𝑤)) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))
5753, 56eqtrd 2222 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))
5849, 57eqeq12d 2204 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) ↔ ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))))
5958ralbidva 2486 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) → (∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) ↔ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))))
6037, 59anbi12d 473 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) → (((𝑢(+g𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ((𝑢(+g𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
61602ralbidva 2512 . . . . 5 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑢𝐵𝑣𝐵 ((𝑢(+g𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ∀𝑢𝐵𝑣𝐵 ((𝑢(+g𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
623adantr 276 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → 𝐵 = (Base‘𝐾))
6362eleq2d 2259 . . . . . . . 8 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → ((𝑢(+g𝐾)𝑣) ∈ 𝐵 ↔ (𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾)))
6462raleqdv 2692 . . . . . . . 8 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))))
6563, 64anbi12d 473 . . . . . . 7 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (((𝑢(+g𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)))))
6662, 65raleqbidv 2698 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑣𝐵 ((𝑢(+g𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)))))
6762, 66raleqbidv 2698 . . . . 5 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑢𝐵𝑣𝐵 ((𝑢(+g𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)))))
6817adantr 276 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → 𝐵 = (Base‘𝐿))
6968eleq2d 2259 . . . . . . . 8 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → ((𝑢(+g𝐿)𝑣) ∈ 𝐵 ↔ (𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿)))
7068raleqdv 2692 . . . . . . . 8 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))))
7169, 70anbi12d 473 . . . . . . 7 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (((𝑢(+g𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))) ↔ ((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
7268, 71raleqbidv 2698 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑣𝐵 ((𝑢(+g𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
7368, 72raleqbidv 2698 . . . . 5 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑢𝐵𝑣𝐵 ((𝑢(+g𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
7461, 67, 733bitr3d 218 . . . 4 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
75 sgrppropd.l . . . . . . 7 (𝜑𝐿𝑊)
7622, 23issgrpv 12864 . . . . . . 7 (𝐿𝑊 → (𝐿 ∈ Smgrp ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
7775, 76syl 14 . . . . . 6 (𝜑 → (𝐿 ∈ Smgrp ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
7877bicomd 141 . . . . 5 (𝜑 → (∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))) ↔ 𝐿 ∈ Smgrp))
7978adantr 276 . . . 4 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))) ↔ 𝐿 ∈ Smgrp))
8034, 74, 793bitrd 214 . . 3 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (𝐾 ∈ Smgrp ↔ 𝐿 ∈ Smgrp))
8180ex 115 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵 → (𝐾 ∈ Smgrp ↔ 𝐿 ∈ Smgrp)))
8214, 30, 81pm5.21ndd 706 1 (𝜑 → (𝐾 ∈ Smgrp ↔ 𝐿 ∈ Smgrp))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  wral 2468  cfv 5235  (class class class)co 5895  Basecbs 12511  +gcplusg 12586  Smgrpcsgrp 12861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-ov 5898  df-inn 8949  df-2 9007  df-ndx 12514  df-slot 12515  df-base 12517  df-plusg 12599  df-mgm 12829  df-sgrp 12862
This theorem is referenced by:  rngpropd  13306
  Copyright terms: Public domain W3C validator