| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > submcl | GIF version | ||
| Description: Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| submcl.p | ⊢ + = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| submcl | ⊢ ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submrcl 13378 | . . . . . . 7 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) | |
| 2 | eqid 2206 | . . . . . . . 8 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 3 | eqid 2206 | . . . . . . . 8 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 4 | submcl.p | . . . . . . . 8 ⊢ + = (+g‘𝑀) | |
| 5 | 2, 3, 4 | issubm 13379 | . . . . . . 7 ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) |
| 6 | 1, 5 | syl 14 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) |
| 7 | 6 | ibi 176 | . . . . 5 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆)) |
| 8 | 7 | simp3d 1014 | . . . 4 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) |
| 9 | ovrspc2v 5983 | . . . 4 ⊢ (((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | |
| 10 | 8, 9 | sylan2 286 | . . 3 ⊢ (((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ 𝑆 ∈ (SubMnd‘𝑀)) → (𝑋 + 𝑌) ∈ 𝑆) |
| 11 | 10 | ancoms 268 | . 2 ⊢ ((𝑆 ∈ (SubMnd‘𝑀) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋 + 𝑌) ∈ 𝑆) |
| 12 | 11 | 3impb 1202 | 1 ⊢ ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3170 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 +gcplusg 12984 0gc0g 13163 Mndcmnd 13323 SubMndcsubmnd 13365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-ov 5960 df-inn 9057 df-ndx 12910 df-slot 12911 df-base 12913 df-submnd 13367 |
| This theorem is referenced by: resmhm 13394 mhmima 13398 gsumwsubmcl 13403 submmulgcl 13576 gsumfzsubmcl 13749 |
| Copyright terms: Public domain | W3C validator |