ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  submcl GIF version

Theorem submcl 12931
Description: Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
submcl.p + = (+g𝑀)
Assertion
Ref Expression
submcl ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)

Proof of Theorem submcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 12923 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)
2 eqid 2189 . . . . . . . 8 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2189 . . . . . . . 8 (0g𝑀) = (0g𝑀)
4 submcl.p . . . . . . . 8 + = (+g𝑀)
52, 3, 4issubm 12924 . . . . . . 7 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
61, 5syl 14 . . . . . 6 (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
76ibi 176 . . . . 5 (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
87simp3d 1013 . . . 4 (𝑆 ∈ (SubMnd‘𝑀) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
9 ovrspc2v 5922 . . . 4 (((𝑋𝑆𝑌𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
108, 9sylan2 286 . . 3 (((𝑋𝑆𝑌𝑆) ∧ 𝑆 ∈ (SubMnd‘𝑀)) → (𝑋 + 𝑌) ∈ 𝑆)
1110ancoms 268 . 2 ((𝑆 ∈ (SubMnd‘𝑀) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋 + 𝑌) ∈ 𝑆)
12113impb 1201 1 ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  wral 2468  wss 3144  cfv 5235  (class class class)co 5896  Basecbs 12512  +gcplusg 12589  0gc0g 12761  Mndcmnd 12877  SubMndcsubmnd 12910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7932  ax-resscn 7933  ax-1re 7935  ax-addrcl 7938
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-ov 5899  df-inn 8950  df-ndx 12515  df-slot 12516  df-base 12518  df-submnd 12912
This theorem is referenced by:  resmhm  12939  mhmima  12943  submmulgcl  13105
  Copyright terms: Public domain W3C validator