| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rneqd | GIF version | ||
| Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| rneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rneqd | ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rneq 4894 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ran crn 4665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-cnv 4672 df-dm 4674 df-rn 4675 |
| This theorem is referenced by: resima2 4981 imaeq1 5005 imaeq2 5006 mptimass 5023 resiima 5028 elxp4 5158 elxp5 5159 funimacnv 5335 funimaexg 5343 fnima 5379 fnrnfv 5610 2ndvalg 6210 fo2nd 6225 f2ndres 6227 en1 6867 xpassen 6898 xpdom2 6899 sbthlemi4 7035 djudom 7168 exmidfodomrlemim 7280 seqeq1 10559 seqeq2 10560 seqeq3 10561 seq3val 10569 seqvalcd 10570 ennnfonelemex 12656 ennnfonelemf1 12660 restval 12947 restid2 12950 prdsex 12971 prdsval 12975 imasival 13008 conjsubg 13483 rnrhmsubrg 13884 tgrest 14489 txvalex 14574 txval 14575 mopnval 14762 |
| Copyright terms: Public domain | W3C validator |