ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneqd GIF version

Theorem rneqd 4892
Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
Hypothesis
Ref Expression
rneqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
rneqd (𝜑 → ran 𝐴 = ran 𝐵)

Proof of Theorem rneqd
StepHypRef Expression
1 rneqd.1 . 2 (𝜑𝐴 = 𝐵)
2 rneq 4890 . 2 (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)
31, 2syl 14 1 (𝜑 → ran 𝐴 = ran 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  ran crn 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-cnv 4668  df-dm 4670  df-rn 4671
This theorem is referenced by:  resima2  4977  imaeq1  5001  imaeq2  5002  mptimass  5019  resiima  5024  elxp4  5154  elxp5  5155  funimacnv  5331  funimaexg  5339  fnima  5373  fnrnfv  5604  2ndvalg  6198  fo2nd  6213  f2ndres  6215  en1  6855  xpassen  6886  xpdom2  6887  sbthlemi4  7021  djudom  7154  exmidfodomrlemim  7263  seqeq1  10524  seqeq2  10525  seqeq3  10526  seq3val  10534  seqvalcd  10535  ennnfonelemex  12574  ennnfonelemf1  12578  restval  12859  restid2  12862  prdsex  12883  imasival  12892  conjsubg  13350  rnrhmsubrg  13751  tgrest  14348  txvalex  14433  txval  14434  mopnval  14621
  Copyright terms: Public domain W3C validator