![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rneqd | GIF version |
Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
rneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
rneqd | ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | rneq 4889 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ran crn 4660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-cnv 4667 df-dm 4669 df-rn 4670 |
This theorem is referenced by: resima2 4976 imaeq1 5000 imaeq2 5001 mptimass 5018 resiima 5023 elxp4 5153 elxp5 5154 funimacnv 5330 funimaexg 5338 fnima 5372 fnrnfv 5603 2ndvalg 6196 fo2nd 6211 f2ndres 6213 en1 6853 xpassen 6884 xpdom2 6885 sbthlemi4 7019 djudom 7152 exmidfodomrlemim 7261 seqeq1 10521 seqeq2 10522 seqeq3 10523 seq3val 10531 seqvalcd 10532 ennnfonelemex 12571 ennnfonelemf1 12575 restval 12856 restid2 12859 prdsex 12880 imasival 12889 conjsubg 13347 rnrhmsubrg 13748 tgrest 14337 txvalex 14422 txval 14423 mopnval 14610 |
Copyright terms: Public domain | W3C validator |