| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rneqd | GIF version | ||
| Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| rneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rneqd | ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rneq 4904 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ran crn 4675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-cnv 4682 df-dm 4684 df-rn 4685 |
| This theorem is referenced by: resima2 4992 imaeq1 5016 imaeq2 5017 mptimass 5034 resiima 5039 elxp4 5169 elxp5 5170 funimacnv 5349 funimaexg 5357 fnima 5393 fnrnfv 5624 2ndvalg 6228 fo2nd 6243 f2ndres 6245 en1 6890 xpassen 6924 xpdom2 6925 sbthlemi4 7061 djudom 7194 exmidfodomrlemim 7308 seqeq1 10593 seqeq2 10594 seqeq3 10595 seq3val 10603 seqvalcd 10604 ennnfonelemex 12727 ennnfonelemf1 12731 restval 13019 restid2 13022 prdsex 13043 prdsval 13047 imasival 13080 conjsubg 13555 rnrhmsubrg 13956 tgrest 14583 txvalex 14668 txval 14669 mopnval 14856 |
| Copyright terms: Public domain | W3C validator |