ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneqd GIF version

Theorem rneqd 4895
Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
Hypothesis
Ref Expression
rneqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
rneqd (𝜑 → ran 𝐴 = ran 𝐵)

Proof of Theorem rneqd
StepHypRef Expression
1 rneqd.1 . 2 (𝜑𝐴 = 𝐵)
2 rneq 4893 . 2 (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)
31, 2syl 14 1 (𝜑 → ran 𝐴 = ran 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  ran crn 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-cnv 4671  df-dm 4673  df-rn 4674
This theorem is referenced by:  resima2  4980  imaeq1  5004  imaeq2  5005  mptimass  5022  resiima  5027  elxp4  5157  elxp5  5158  funimacnv  5334  funimaexg  5342  fnima  5376  fnrnfv  5607  2ndvalg  6201  fo2nd  6216  f2ndres  6218  en1  6858  xpassen  6889  xpdom2  6890  sbthlemi4  7026  djudom  7159  exmidfodomrlemim  7268  seqeq1  10542  seqeq2  10543  seqeq3  10544  seq3val  10552  seqvalcd  10553  ennnfonelemex  12631  ennnfonelemf1  12635  restval  12916  restid2  12919  prdsex  12940  imasival  12949  conjsubg  13407  rnrhmsubrg  13808  tgrest  14405  txvalex  14490  txval  14491  mopnval  14678
  Copyright terms: Public domain W3C validator