ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneqd GIF version

Theorem rneqd 4896
Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
Hypothesis
Ref Expression
rneqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
rneqd (𝜑 → ran 𝐴 = ran 𝐵)

Proof of Theorem rneqd
StepHypRef Expression
1 rneqd.1 . 2 (𝜑𝐴 = 𝐵)
2 rneq 4894 . 2 (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)
31, 2syl 14 1 (𝜑 → ran 𝐴 = ran 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  ran crn 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-cnv 4672  df-dm 4674  df-rn 4675
This theorem is referenced by:  resima2  4981  imaeq1  5005  imaeq2  5006  mptimass  5023  resiima  5028  elxp4  5158  elxp5  5159  funimacnv  5335  funimaexg  5343  fnima  5379  fnrnfv  5610  2ndvalg  6210  fo2nd  6225  f2ndres  6227  en1  6867  xpassen  6898  xpdom2  6899  sbthlemi4  7035  djudom  7168  exmidfodomrlemim  7280  seqeq1  10559  seqeq2  10560  seqeq3  10561  seq3val  10569  seqvalcd  10570  ennnfonelemex  12656  ennnfonelemf1  12660  restval  12947  restid2  12950  prdsex  12971  prdsval  12975  imasival  13008  conjsubg  13483  rnrhmsubrg  13884  tgrest  14489  txvalex  14574  txval  14575  mopnval  14762
  Copyright terms: Public domain W3C validator