ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneqd GIF version

Theorem rneqd 4916
Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
Hypothesis
Ref Expression
rneqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
rneqd (𝜑 → ran 𝐴 = ran 𝐵)

Proof of Theorem rneqd
StepHypRef Expression
1 rneqd.1 . 2 (𝜑𝐴 = 𝐵)
2 rneq 4914 . 2 (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)
31, 2syl 14 1 (𝜑 → ran 𝐴 = ran 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  ran crn 4684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-cnv 4691  df-dm 4693  df-rn 4694
This theorem is referenced by:  resima2  5002  imaeq1  5026  imaeq2  5027  mptimass  5044  resiima  5049  elxp4  5179  elxp5  5180  funimacnv  5359  funimaexg  5367  fnima  5404  fnrnfv  5638  2ndvalg  6242  fo2nd  6257  f2ndres  6259  en1  6904  xpassen  6940  xpdom2  6941  sbthlemi4  7077  djudom  7210  exmidfodomrlemim  7325  seqeq1  10617  seqeq2  10618  seqeq3  10619  seq3val  10627  seqvalcd  10628  s1rn  11095  ennnfonelemex  12860  ennnfonelemf1  12864  restval  13152  restid2  13155  prdsex  13176  prdsval  13180  imasival  13213  conjsubg  13688  rnrhmsubrg  14089  tgrest  14716  txvalex  14801  txval  14802  mopnval  14989  edgvalg  15731  edgopval  15733  edgstruct  15735
  Copyright terms: Public domain W3C validator