| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rneqd | GIF version | ||
| Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| rneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rneqd | ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rneq 4914 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ran crn 4684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-cnv 4691 df-dm 4693 df-rn 4694 |
| This theorem is referenced by: resima2 5002 imaeq1 5026 imaeq2 5027 mptimass 5044 resiima 5049 elxp4 5179 elxp5 5180 funimacnv 5359 funimaexg 5367 fnima 5404 fnrnfv 5638 2ndvalg 6242 fo2nd 6257 f2ndres 6259 en1 6904 xpassen 6940 xpdom2 6941 sbthlemi4 7077 djudom 7210 exmidfodomrlemim 7325 seqeq1 10617 seqeq2 10618 seqeq3 10619 seq3val 10627 seqvalcd 10628 s1rn 11095 ennnfonelemex 12860 ennnfonelemf1 12864 restval 13152 restid2 13155 prdsex 13176 prdsval 13180 imasival 13213 conjsubg 13688 rnrhmsubrg 14089 tgrest 14716 txvalex 14801 txval 14802 mopnval 14989 edgvalg 15731 edgopval 15733 edgstruct 15735 |
| Copyright terms: Public domain | W3C validator |