| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rneqd | GIF version | ||
| Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.) | 
| Ref | Expression | 
|---|---|
| rneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| rneqd | ⊢ (𝜑 → ran 𝐴 = ran 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rneq 4893 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ran 𝐴 = ran 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ran crn 4664 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-cnv 4671 df-dm 4673 df-rn 4674 | 
| This theorem is referenced by: resima2 4980 imaeq1 5004 imaeq2 5005 mptimass 5022 resiima 5027 elxp4 5157 elxp5 5158 funimacnv 5334 funimaexg 5342 fnima 5376 fnrnfv 5607 2ndvalg 6201 fo2nd 6216 f2ndres 6218 en1 6858 xpassen 6889 xpdom2 6890 sbthlemi4 7026 djudom 7159 exmidfodomrlemim 7268 seqeq1 10542 seqeq2 10543 seqeq3 10544 seq3val 10552 seqvalcd 10553 ennnfonelemex 12631 ennnfonelemf1 12635 restval 12916 restid2 12919 prdsex 12940 imasival 12949 conjsubg 13407 rnrhmsubrg 13808 tgrest 14405 txvalex 14490 txval 14491 mopnval 14678 | 
| Copyright terms: Public domain | W3C validator |