Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rneqd | GIF version |
Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
rneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
rneqd | ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | rneq 4831 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ran crn 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-cnv 4612 df-dm 4614 df-rn 4615 |
This theorem is referenced by: resima2 4918 imaeq1 4941 imaeq2 4942 resiima 4962 elxp4 5091 elxp5 5092 funimacnv 5264 funimaexg 5272 fnima 5306 fnrnfv 5533 2ndvalg 6111 fo2nd 6126 f2ndres 6128 en1 6765 xpassen 6796 xpdom2 6797 sbthlemi4 6925 djudom 7058 exmidfodomrlemim 7157 seqeq1 10383 seqeq2 10384 seqeq3 10385 seq3val 10393 seqvalcd 10394 ennnfonelemex 12347 ennnfonelemf1 12351 restval 12562 restid2 12565 tgrest 12819 txvalex 12904 txval 12905 mopnval 13092 |
Copyright terms: Public domain | W3C validator |