ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneqd GIF version

Theorem rneqd 4905
Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
Hypothesis
Ref Expression
rneqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
rneqd (𝜑 → ran 𝐴 = ran 𝐵)

Proof of Theorem rneqd
StepHypRef Expression
1 rneqd.1 . 2 (𝜑𝐴 = 𝐵)
2 rneq 4903 . 2 (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)
31, 2syl 14 1 (𝜑 → ran 𝐴 = ran 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  ran crn 4674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-cnv 4681  df-dm 4683  df-rn 4684
This theorem is referenced by:  resima2  4990  imaeq1  5014  imaeq2  5015  mptimass  5032  resiima  5037  elxp4  5167  elxp5  5168  funimacnv  5344  funimaexg  5352  fnima  5388  fnrnfv  5619  2ndvalg  6219  fo2nd  6234  f2ndres  6236  en1  6876  xpassen  6907  xpdom2  6908  sbthlemi4  7044  djudom  7177  exmidfodomrlemim  7291  seqeq1  10576  seqeq2  10577  seqeq3  10578  seq3val  10586  seqvalcd  10587  ennnfonelemex  12704  ennnfonelemf1  12708  restval  12995  restid2  12998  prdsex  13019  prdsval  13023  imasival  13056  conjsubg  13531  rnrhmsubrg  13932  tgrest  14559  txvalex  14644  txval  14645  mopnval  14832
  Copyright terms: Public domain W3C validator