![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rneqd | GIF version |
Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
rneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
rneqd | ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | rneq 4890 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ran crn 4661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-cnv 4668 df-dm 4670 df-rn 4671 |
This theorem is referenced by: resima2 4977 imaeq1 5001 imaeq2 5002 mptimass 5019 resiima 5024 elxp4 5154 elxp5 5155 funimacnv 5331 funimaexg 5339 fnima 5373 fnrnfv 5604 2ndvalg 6198 fo2nd 6213 f2ndres 6215 en1 6855 xpassen 6886 xpdom2 6887 sbthlemi4 7021 djudom 7154 exmidfodomrlemim 7263 seqeq1 10524 seqeq2 10525 seqeq3 10526 seq3val 10534 seqvalcd 10535 ennnfonelemex 12574 ennnfonelemf1 12578 restval 12859 restid2 12862 prdsex 12883 imasival 12892 conjsubg 13350 rnrhmsubrg 13751 tgrest 14348 txvalex 14433 txval 14434 mopnval 14621 |
Copyright terms: Public domain | W3C validator |