ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneqd GIF version

Theorem rneqd 4906
Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
Hypothesis
Ref Expression
rneqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
rneqd (𝜑 → ran 𝐴 = ran 𝐵)

Proof of Theorem rneqd
StepHypRef Expression
1 rneqd.1 . 2 (𝜑𝐴 = 𝐵)
2 rneq 4904 . 2 (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)
31, 2syl 14 1 (𝜑 → ran 𝐴 = ran 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  ran crn 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-cnv 4682  df-dm 4684  df-rn 4685
This theorem is referenced by:  resima2  4992  imaeq1  5016  imaeq2  5017  mptimass  5034  resiima  5039  elxp4  5169  elxp5  5170  funimacnv  5349  funimaexg  5357  fnima  5393  fnrnfv  5624  2ndvalg  6228  fo2nd  6243  f2ndres  6245  en1  6890  xpassen  6924  xpdom2  6925  sbthlemi4  7061  djudom  7194  exmidfodomrlemim  7308  seqeq1  10593  seqeq2  10594  seqeq3  10595  seq3val  10603  seqvalcd  10604  ennnfonelemex  12727  ennnfonelemf1  12731  restval  13019  restid2  13022  prdsex  13043  prdsval  13047  imasival  13080  conjsubg  13555  rnrhmsubrg  13956  tgrest  14583  txvalex  14668  txval  14669  mopnval  14856
  Copyright terms: Public domain W3C validator