| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rneqd | GIF version | ||
| Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| rneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rneqd | ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rneq 4903 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ran crn 4674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-cnv 4681 df-dm 4683 df-rn 4684 |
| This theorem is referenced by: resima2 4990 imaeq1 5014 imaeq2 5015 mptimass 5032 resiima 5037 elxp4 5167 elxp5 5168 funimacnv 5344 funimaexg 5352 fnima 5388 fnrnfv 5619 2ndvalg 6219 fo2nd 6234 f2ndres 6236 en1 6876 xpassen 6907 xpdom2 6908 sbthlemi4 7044 djudom 7177 exmidfodomrlemim 7291 seqeq1 10576 seqeq2 10577 seqeq3 10578 seq3val 10586 seqvalcd 10587 ennnfonelemex 12704 ennnfonelemf1 12708 restval 12995 restid2 12998 prdsex 13019 prdsval 13023 imasival 13056 conjsubg 13531 rnrhmsubrg 13932 tgrest 14559 txvalex 14644 txval 14645 mopnval 14832 |
| Copyright terms: Public domain | W3C validator |