| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rneqd | GIF version | ||
| Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| rneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rneqd | ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rneq 4950 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ran crn 4719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-cnv 4726 df-dm 4728 df-rn 4729 |
| This theorem is referenced by: resima2 5038 imaeq1 5062 imaeq2 5063 mptimass 5080 resiima 5085 elxp4 5215 elxp5 5216 funimacnv 5396 funimaexg 5404 fnima 5441 fnrnfv 5679 2ndvalg 6287 fo2nd 6302 f2ndres 6304 en1 6949 xpassen 6985 xpdom2 6986 sbthlemi4 7123 djudom 7256 exmidfodomrlemim 7375 seqeq1 10667 seqeq2 10668 seqeq3 10669 seq3val 10677 seqvalcd 10678 s1rn 11146 ennnfonelemex 12980 ennnfonelemf1 12984 restval 13273 restid2 13276 prdsex 13297 prdsval 13301 imasival 13334 conjsubg 13809 rnrhmsubrg 14210 tgrest 14837 txvalex 14922 txval 14923 mopnval 15110 edgvalg 15854 edgopval 15856 edgstruct 15858 uhgr2edg 15998 |
| Copyright terms: Public domain | W3C validator |