ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneqd GIF version

Theorem rneqd 4891
Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
Hypothesis
Ref Expression
rneqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
rneqd (𝜑 → ran 𝐴 = ran 𝐵)

Proof of Theorem rneqd
StepHypRef Expression
1 rneqd.1 . 2 (𝜑𝐴 = 𝐵)
2 rneq 4889 . 2 (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)
31, 2syl 14 1 (𝜑 → ran 𝐴 = ran 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  ran crn 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-cnv 4667  df-dm 4669  df-rn 4670
This theorem is referenced by:  resima2  4976  imaeq1  5000  imaeq2  5001  mptimass  5018  resiima  5023  elxp4  5153  elxp5  5154  funimacnv  5330  funimaexg  5338  fnima  5372  fnrnfv  5603  2ndvalg  6196  fo2nd  6211  f2ndres  6213  en1  6853  xpassen  6884  xpdom2  6885  sbthlemi4  7019  djudom  7152  exmidfodomrlemim  7261  seqeq1  10521  seqeq2  10522  seqeq3  10523  seq3val  10531  seqvalcd  10532  ennnfonelemex  12571  ennnfonelemf1  12575  restval  12856  restid2  12859  prdsex  12880  imasival  12889  conjsubg  13347  rnrhmsubrg  13748  tgrest  14337  txvalex  14422  txval  14423  mopnval  14610
  Copyright terms: Public domain W3C validator