| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpex | GIF version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpex.1 | ⊢ 𝐴 ∈ V |
| xpex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| xpex | ⊢ (𝐴 × 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | xpex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | xpexg 4778 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 × 𝐵) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 × cxp 4662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-opab 4096 df-xp 4670 |
| This theorem is referenced by: oprabex 6194 oprabex3 6195 mpoexw 6280 fnpm 6724 mapsnf1o2 6764 xpsnen 6889 endisj 6892 xpcomen 6895 xpassen 6898 xpmapenlem 6919 0ct 7182 exmidomni 7217 exmidfodomrlemim 7282 2omotaplemst 7343 enqex 7446 nqex 7449 enq0ex 7525 nq0ex 7526 npex 7559 enrex 7823 addvalex 7930 axcnex 7945 addex 9745 mulex 9746 ixxex 9993 fxnn0nninf 10550 inftonninf 10553 shftfval 11005 nninfct 12235 qnumval 12380 qdenval 12381 qnnen 12675 prdsex 12973 metuex 14189 cnfldstr 14192 cnfldle 14201 znval 14270 znle 14271 znbaslemnn 14273 fnpsr 14301 txuni2 14600 txbas 14602 eltx 14603 txcnp 14615 txcnmpt 14617 txrest 14620 txlm 14623 reldvg 15023 |
| Copyright terms: Public domain | W3C validator |