Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpex | GIF version |
Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpex.1 | ⊢ 𝐴 ∈ V |
xpex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
xpex | ⊢ (𝐴 × 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | xpex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | xpexg 4697 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V) | |
4 | 1, 2, 3 | mp2an 423 | 1 ⊢ (𝐴 × 𝐵) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2128 Vcvv 2712 × cxp 4581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-opab 4026 df-xp 4589 |
This theorem is referenced by: oprabex 6070 oprabex3 6071 fnpm 6594 mapsnf1o2 6634 xpsnen 6759 endisj 6762 xpcomen 6765 xpassen 6768 xpmapenlem 6787 0ct 7041 exmidomni 7068 exmidfodomrlemim 7119 enqex 7263 nqex 7266 enq0ex 7342 nq0ex 7343 npex 7376 enrex 7640 addvalex 7747 axcnex 7762 ixxex 9785 fxnn0nninf 10319 inftonninf 10322 shftfval 10703 qnumval 12039 qdenval 12040 qnnen 12132 txuni2 12616 txbas 12618 eltx 12619 txcnp 12631 txcnmpt 12633 txrest 12636 txlm 12639 reldvg 13008 |
Copyright terms: Public domain | W3C validator |