![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpex | GIF version |
Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpex.1 | ⊢ 𝐴 ∈ V |
xpex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
xpex | ⊢ (𝐴 × 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | xpex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | xpexg 4613 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V) | |
4 | 1, 2, 3 | mp2an 420 | 1 ⊢ (𝐴 × 𝐵) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1463 Vcvv 2657 × cxp 4497 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-rex 2396 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-opab 3950 df-xp 4505 |
This theorem is referenced by: oprabex 5980 oprabex3 5981 fnpm 6504 mapsnf1o2 6544 xpsnen 6668 endisj 6671 xpcomen 6674 xpassen 6677 xpmapenlem 6696 0ct 6944 exmidomni 6964 exmidfodomrlemim 7005 enqex 7116 nqex 7119 enq0ex 7195 nq0ex 7196 npex 7229 enrex 7480 addvalex 7579 axcnex 7594 ixxex 9575 fxnn0nninf 10104 inftonninf 10107 shftfval 10486 qnumval 11708 qdenval 11709 qnnen 11789 txuni2 12267 txbas 12269 eltx 12270 txcnp 12282 txcnmpt 12284 txrest 12287 txlm 12290 reldvg 12603 |
Copyright terms: Public domain | W3C validator |