| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xpex | GIF version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| xpex.1 | ⊢ 𝐴 ∈ V | 
| xpex.2 | ⊢ 𝐵 ∈ V | 
| Ref | Expression | 
|---|---|
| xpex | ⊢ (𝐴 × 𝐵) ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | xpex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | xpexg 4777 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 × 𝐵) ∈ V | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 Vcvv 2763 × cxp 4661 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-opab 4095 df-xp 4669 | 
| This theorem is referenced by: oprabex 6185 oprabex3 6186 mpoexw 6271 fnpm 6715 mapsnf1o2 6755 xpsnen 6880 endisj 6883 xpcomen 6886 xpassen 6889 xpmapenlem 6910 0ct 7173 exmidomni 7208 exmidfodomrlemim 7268 2omotaplemst 7325 enqex 7427 nqex 7430 enq0ex 7506 nq0ex 7507 npex 7540 enrex 7804 addvalex 7911 axcnex 7926 addex 9726 mulex 9727 ixxex 9974 fxnn0nninf 10531 inftonninf 10534 shftfval 10986 nninfct 12208 qnumval 12353 qdenval 12354 qnnen 12648 prdsex 12940 metuex 14111 cnfldstr 14114 cnfldle 14123 znval 14192 znle 14193 znbaslemnn 14195 fnpsr 14221 txuni2 14492 txbas 14494 eltx 14495 txcnp 14507 txcnmpt 14509 txrest 14512 txlm 14515 reldvg 14915 | 
| Copyright terms: Public domain | W3C validator |