Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpex | GIF version |
Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpex.1 | ⊢ 𝐴 ∈ V |
xpex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
xpex | ⊢ (𝐴 × 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | xpex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | xpexg 4725 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V) | |
4 | 1, 2, 3 | mp2an 424 | 1 ⊢ (𝐴 × 𝐵) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 × cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-opab 4051 df-xp 4617 |
This theorem is referenced by: oprabex 6107 oprabex3 6108 mpoexw 6192 fnpm 6634 mapsnf1o2 6674 xpsnen 6799 endisj 6802 xpcomen 6805 xpassen 6808 xpmapenlem 6827 0ct 7084 exmidomni 7118 exmidfodomrlemim 7178 enqex 7322 nqex 7325 enq0ex 7401 nq0ex 7402 npex 7435 enrex 7699 addvalex 7806 axcnex 7821 ixxex 9856 fxnn0nninf 10394 inftonninf 10397 shftfval 10785 qnumval 12139 qdenval 12140 qnnen 12386 txuni2 13050 txbas 13052 eltx 13053 txcnp 13065 txcnmpt 13067 txrest 13070 txlm 13073 reldvg 13442 |
Copyright terms: Public domain | W3C validator |