![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpex | GIF version |
Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpex.1 | ⊢ 𝐴 ∈ V |
xpex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
xpex | ⊢ (𝐴 × 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | xpex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | xpexg 4773 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V) | |
4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 × 𝐵) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 × cxp 4657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-opab 4091 df-xp 4665 |
This theorem is referenced by: oprabex 6180 oprabex3 6181 mpoexw 6266 fnpm 6710 mapsnf1o2 6750 xpsnen 6875 endisj 6878 xpcomen 6881 xpassen 6884 xpmapenlem 6905 0ct 7166 exmidomni 7201 exmidfodomrlemim 7261 2omotaplemst 7318 enqex 7420 nqex 7423 enq0ex 7499 nq0ex 7500 npex 7533 enrex 7797 addvalex 7904 axcnex 7919 addex 9717 mulex 9718 ixxex 9965 fxnn0nninf 10510 inftonninf 10513 shftfval 10965 nninfct 12178 qnumval 12323 qdenval 12324 qnnen 12588 prdsex 12880 znval 14124 znle 14125 znbaslemnn 14127 fnpsr 14153 txuni2 14424 txbas 14426 eltx 14427 txcnp 14439 txcnmpt 14441 txrest 14444 txlm 14447 reldvg 14833 |
Copyright terms: Public domain | W3C validator |