| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpex | GIF version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpex.1 | ⊢ 𝐴 ∈ V |
| xpex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| xpex | ⊢ (𝐴 × 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | xpex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | xpexg 4793 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 × 𝐵) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 × cxp 4677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-opab 4110 df-xp 4685 |
| This theorem is referenced by: oprabex 6220 oprabex3 6221 mpoexw 6306 fnpm 6750 mapsnf1o2 6790 xpsnen 6923 endisj 6926 xpcomen 6929 xpassen 6932 xpmapenlem 6953 0ct 7216 exmidomni 7251 exmidfodomrlemim 7316 2omotaplemst 7377 enqex 7480 nqex 7483 enq0ex 7559 nq0ex 7560 npex 7593 enrex 7857 addvalex 7964 axcnex 7979 addex 9780 mulex 9781 ixxex 10028 fxnn0nninf 10591 inftonninf 10594 shftfval 11176 nninfct 12406 qnumval 12551 qdenval 12552 qnnen 12846 prdsex 13145 metuex 14361 cnfldstr 14364 cnfldle 14373 znval 14442 znle 14443 znbaslemnn 14445 fnpsr 14473 txuni2 14772 txbas 14774 eltx 14775 txcnp 14787 txcnmpt 14789 txrest 14792 txlm 14795 reldvg 15195 |
| Copyright terms: Public domain | W3C validator |