| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpex | GIF version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpex.1 | ⊢ 𝐴 ∈ V |
| xpex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| xpex | ⊢ (𝐴 × 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | xpex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | xpexg 4833 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 × 𝐵) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 × cxp 4717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-opab 4146 df-xp 4725 |
| This theorem is referenced by: oprabex 6279 oprabex3 6280 mpoexw 6365 fnpm 6811 mapsnf1o2 6851 xpsnen 6988 endisj 6991 xpcomen 6994 xpassen 6997 xpmapenlem 7018 0ct 7282 exmidomni 7317 exmidfodomrlemim 7387 2omotaplemst 7452 enqex 7555 nqex 7558 enq0ex 7634 nq0ex 7635 npex 7668 enrex 7932 addvalex 8039 axcnex 8054 addex 9855 mulex 9856 ixxex 10103 fxnn0nninf 10669 inftonninf 10672 shftfval 11340 nninfct 12570 qnumval 12715 qdenval 12716 qnnen 13010 prdsex 13310 metuex 14527 cnfldstr 14530 cnfldle 14539 znval 14608 znle 14609 znbaslemnn 14611 fnpsr 14639 txuni2 14938 txbas 14940 eltx 14941 txcnp 14953 txcnmpt 14955 txrest 14958 txlm 14961 reldvg 15361 |
| Copyright terms: Public domain | W3C validator |