| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpex | GIF version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpex.1 | ⊢ 𝐴 ∈ V |
| xpex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| xpex | ⊢ (𝐴 × 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | xpex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | xpexg 4810 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 × 𝐵) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 Vcvv 2779 × cxp 4694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-opab 4125 df-xp 4702 |
| This theorem is referenced by: oprabex 6243 oprabex3 6244 mpoexw 6329 fnpm 6773 mapsnf1o2 6813 xpsnen 6948 endisj 6951 xpcomen 6954 xpassen 6957 xpmapenlem 6978 0ct 7242 exmidomni 7277 exmidfodomrlemim 7347 2omotaplemst 7412 enqex 7515 nqex 7518 enq0ex 7594 nq0ex 7595 npex 7628 enrex 7892 addvalex 7999 axcnex 8014 addex 9815 mulex 9816 ixxex 10063 fxnn0nninf 10628 inftonninf 10631 shftfval 11298 nninfct 12528 qnumval 12673 qdenval 12674 qnnen 12968 prdsex 13268 metuex 14484 cnfldstr 14487 cnfldle 14496 znval 14565 znle 14566 znbaslemnn 14568 fnpsr 14596 txuni2 14895 txbas 14897 eltx 14898 txcnp 14910 txcnmpt 14912 txrest 14915 txlm 14918 reldvg 15318 |
| Copyright terms: Public domain | W3C validator |