Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prarloclemn | GIF version |
Description: Subtracting two from a positive integer. Lemma for prarloc 7444. (Contributed by Jim Kingdon, 5-Nov-2019.) |
Ref | Expression |
---|---|
prarloclemn | ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → 𝑁 ∈ N) | |
2 | 1pi 7256 | . . . . 5 ⊢ 1o ∈ N | |
3 | ltpiord 7260 | . . . . 5 ⊢ ((1o ∈ N ∧ 𝑁 ∈ N) → (1o <N 𝑁 ↔ 1o ∈ 𝑁)) | |
4 | 2, 3 | mpan 421 | . . . 4 ⊢ (𝑁 ∈ N → (1o <N 𝑁 ↔ 1o ∈ 𝑁)) |
5 | 4 | biimpa 294 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → 1o ∈ 𝑁) |
6 | piord 7252 | . . . 4 ⊢ (𝑁 ∈ N → Ord 𝑁) | |
7 | ordsucss 4481 | . . . 4 ⊢ (Ord 𝑁 → (1o ∈ 𝑁 → suc 1o ⊆ 𝑁)) | |
8 | 6, 7 | syl 14 | . . 3 ⊢ (𝑁 ∈ N → (1o ∈ 𝑁 → suc 1o ⊆ 𝑁)) |
9 | 1, 5, 8 | sylc 62 | . 2 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → suc 1o ⊆ 𝑁) |
10 | df-2o 6385 | . . . 4 ⊢ 2o = suc 1o | |
11 | 10 | sseq1i 3168 | . . 3 ⊢ (2o ⊆ 𝑁 ↔ suc 1o ⊆ 𝑁) |
12 | pinn 7250 | . . . . 5 ⊢ (𝑁 ∈ N → 𝑁 ∈ ω) | |
13 | 2onn 6489 | . . . . . 6 ⊢ 2o ∈ ω | |
14 | nnawordex 6496 | . . . . . 6 ⊢ ((2o ∈ ω ∧ 𝑁 ∈ ω) → (2o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) | |
15 | 13, 14 | mpan 421 | . . . . 5 ⊢ (𝑁 ∈ ω → (2o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) |
16 | 12, 15 | syl 14 | . . . 4 ⊢ (𝑁 ∈ N → (2o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) |
17 | 16 | adantr 274 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → (2o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) |
18 | 11, 17 | bitr3id 193 | . 2 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → (suc 1o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) |
19 | 9, 18 | mpbid 146 | 1 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 ⊆ wss 3116 class class class wbr 3982 Ord word 4340 suc csuc 4343 ωcom 4567 (class class class)co 5842 1oc1o 6377 2oc2o 6378 +o coa 6381 Ncnpi 7213 <N clti 7216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-ni 7245 df-lti 7248 |
This theorem is referenced by: prarloclem5 7441 |
Copyright terms: Public domain | W3C validator |