![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prarloclemn | GIF version |
Description: Subtracting two from a positive integer. Lemma for prarloc 7504. (Contributed by Jim Kingdon, 5-Nov-2019.) |
Ref | Expression |
---|---|
prarloclemn | ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → 𝑁 ∈ N) | |
2 | 1pi 7316 | . . . . 5 ⊢ 1o ∈ N | |
3 | ltpiord 7320 | . . . . 5 ⊢ ((1o ∈ N ∧ 𝑁 ∈ N) → (1o <N 𝑁 ↔ 1o ∈ 𝑁)) | |
4 | 2, 3 | mpan 424 | . . . 4 ⊢ (𝑁 ∈ N → (1o <N 𝑁 ↔ 1o ∈ 𝑁)) |
5 | 4 | biimpa 296 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → 1o ∈ 𝑁) |
6 | piord 7312 | . . . 4 ⊢ (𝑁 ∈ N → Ord 𝑁) | |
7 | ordsucss 4505 | . . . 4 ⊢ (Ord 𝑁 → (1o ∈ 𝑁 → suc 1o ⊆ 𝑁)) | |
8 | 6, 7 | syl 14 | . . 3 ⊢ (𝑁 ∈ N → (1o ∈ 𝑁 → suc 1o ⊆ 𝑁)) |
9 | 1, 5, 8 | sylc 62 | . 2 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → suc 1o ⊆ 𝑁) |
10 | df-2o 6420 | . . . 4 ⊢ 2o = suc 1o | |
11 | 10 | sseq1i 3183 | . . 3 ⊢ (2o ⊆ 𝑁 ↔ suc 1o ⊆ 𝑁) |
12 | pinn 7310 | . . . . 5 ⊢ (𝑁 ∈ N → 𝑁 ∈ ω) | |
13 | 2onn 6524 | . . . . . 6 ⊢ 2o ∈ ω | |
14 | nnawordex 6532 | . . . . . 6 ⊢ ((2o ∈ ω ∧ 𝑁 ∈ ω) → (2o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) | |
15 | 13, 14 | mpan 424 | . . . . 5 ⊢ (𝑁 ∈ ω → (2o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) |
16 | 12, 15 | syl 14 | . . . 4 ⊢ (𝑁 ∈ N → (2o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) |
17 | 16 | adantr 276 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → (2o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) |
18 | 11, 17 | bitr3id 194 | . 2 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → (suc 1o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) |
19 | 9, 18 | mpbid 147 | 1 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 ⊆ wss 3131 class class class wbr 4005 Ord word 4364 suc csuc 4367 ωcom 4591 (class class class)co 5877 1oc1o 6412 2oc2o 6413 +o coa 6416 Ncnpi 7273 <N clti 7276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-1o 6419 df-2o 6420 df-oadd 6423 df-ni 7305 df-lti 7308 |
This theorem is referenced by: prarloclem5 7501 |
Copyright terms: Public domain | W3C validator |