ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemn GIF version

Theorem prarloclemn 7208
Description: Subtracting two from a positive integer. Lemma for prarloc 7212. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
prarloclemn ((𝑁N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)
Distinct variable group:   𝑥,𝑁

Proof of Theorem prarloclemn
StepHypRef Expression
1 simpl 108 . . 3 ((𝑁N ∧ 1o <N 𝑁) → 𝑁N)
2 1pi 7024 . . . . 5 1oN
3 ltpiord 7028 . . . . 5 ((1oN𝑁N) → (1o <N 𝑁 ↔ 1o𝑁))
42, 3mpan 418 . . . 4 (𝑁N → (1o <N 𝑁 ↔ 1o𝑁))
54biimpa 292 . . 3 ((𝑁N ∧ 1o <N 𝑁) → 1o𝑁)
6 piord 7020 . . . 4 (𝑁N → Ord 𝑁)
7 ordsucss 4358 . . . 4 (Ord 𝑁 → (1o𝑁 → suc 1o𝑁))
86, 7syl 14 . . 3 (𝑁N → (1o𝑁 → suc 1o𝑁))
91, 5, 8sylc 62 . 2 ((𝑁N ∧ 1o <N 𝑁) → suc 1o𝑁)
10 df-2o 6244 . . . 4 2o = suc 1o
1110sseq1i 3073 . . 3 (2o𝑁 ↔ suc 1o𝑁)
12 pinn 7018 . . . . 5 (𝑁N𝑁 ∈ ω)
13 2onn 6347 . . . . . 6 2o ∈ ω
14 nnawordex 6354 . . . . . 6 ((2o ∈ ω ∧ 𝑁 ∈ ω) → (2o𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁))
1513, 14mpan 418 . . . . 5 (𝑁 ∈ ω → (2o𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁))
1612, 15syl 14 . . . 4 (𝑁N → (2o𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁))
1716adantr 272 . . 3 ((𝑁N ∧ 1o <N 𝑁) → (2o𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁))
1811, 17syl5bbr 193 . 2 ((𝑁N ∧ 1o <N 𝑁) → (suc 1o𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁))
199, 18mpbid 146 1 ((𝑁N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1299  wcel 1448  wrex 2376  wss 3021   class class class wbr 3875  Ord word 4222  suc csuc 4225  ωcom 4442  (class class class)co 5706  1oc1o 6236  2oc2o 6237   +o coa 6240  Ncnpi 6981   <N clti 6984
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-2o 6244  df-oadd 6247  df-ni 7013  df-lti 7016
This theorem is referenced by:  prarloclem5  7209
  Copyright terms: Public domain W3C validator