![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prarloclemn | GIF version |
Description: Subtracting two from a positive integer. Lemma for prarloc 7565. (Contributed by Jim Kingdon, 5-Nov-2019.) |
Ref | Expression |
---|---|
prarloclemn | ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → 𝑁 ∈ N) | |
2 | 1pi 7377 | . . . . 5 ⊢ 1o ∈ N | |
3 | ltpiord 7381 | . . . . 5 ⊢ ((1o ∈ N ∧ 𝑁 ∈ N) → (1o <N 𝑁 ↔ 1o ∈ 𝑁)) | |
4 | 2, 3 | mpan 424 | . . . 4 ⊢ (𝑁 ∈ N → (1o <N 𝑁 ↔ 1o ∈ 𝑁)) |
5 | 4 | biimpa 296 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → 1o ∈ 𝑁) |
6 | piord 7373 | . . . 4 ⊢ (𝑁 ∈ N → Ord 𝑁) | |
7 | ordsucss 4537 | . . . 4 ⊢ (Ord 𝑁 → (1o ∈ 𝑁 → suc 1o ⊆ 𝑁)) | |
8 | 6, 7 | syl 14 | . . 3 ⊢ (𝑁 ∈ N → (1o ∈ 𝑁 → suc 1o ⊆ 𝑁)) |
9 | 1, 5, 8 | sylc 62 | . 2 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → suc 1o ⊆ 𝑁) |
10 | df-2o 6472 | . . . 4 ⊢ 2o = suc 1o | |
11 | 10 | sseq1i 3206 | . . 3 ⊢ (2o ⊆ 𝑁 ↔ suc 1o ⊆ 𝑁) |
12 | pinn 7371 | . . . . 5 ⊢ (𝑁 ∈ N → 𝑁 ∈ ω) | |
13 | 2onn 6576 | . . . . . 6 ⊢ 2o ∈ ω | |
14 | nnawordex 6584 | . . . . . 6 ⊢ ((2o ∈ ω ∧ 𝑁 ∈ ω) → (2o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) | |
15 | 13, 14 | mpan 424 | . . . . 5 ⊢ (𝑁 ∈ ω → (2o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) |
16 | 12, 15 | syl 14 | . . . 4 ⊢ (𝑁 ∈ N → (2o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) |
17 | 16 | adantr 276 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → (2o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) |
18 | 11, 17 | bitr3id 194 | . 2 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → (suc 1o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) |
19 | 9, 18 | mpbid 147 | 1 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 ⊆ wss 3154 class class class wbr 4030 Ord word 4394 suc csuc 4397 ωcom 4623 (class class class)co 5919 1oc1o 6464 2oc2o 6465 +o coa 6468 Ncnpi 7334 <N clti 7337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-1o 6471 df-2o 6472 df-oadd 6475 df-ni 7366 df-lti 7369 |
This theorem is referenced by: prarloclem5 7562 |
Copyright terms: Public domain | W3C validator |