ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemn GIF version

Theorem prarloclemn 7495
Description: Subtracting two from a positive integer. Lemma for prarloc 7499. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
prarloclemn ((𝑁N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)
Distinct variable group:   𝑥,𝑁

Proof of Theorem prarloclemn
StepHypRef Expression
1 simpl 109 . . 3 ((𝑁N ∧ 1o <N 𝑁) → 𝑁N)
2 1pi 7311 . . . . 5 1oN
3 ltpiord 7315 . . . . 5 ((1oN𝑁N) → (1o <N 𝑁 ↔ 1o𝑁))
42, 3mpan 424 . . . 4 (𝑁N → (1o <N 𝑁 ↔ 1o𝑁))
54biimpa 296 . . 3 ((𝑁N ∧ 1o <N 𝑁) → 1o𝑁)
6 piord 7307 . . . 4 (𝑁N → Ord 𝑁)
7 ordsucss 4502 . . . 4 (Ord 𝑁 → (1o𝑁 → suc 1o𝑁))
86, 7syl 14 . . 3 (𝑁N → (1o𝑁 → suc 1o𝑁))
91, 5, 8sylc 62 . 2 ((𝑁N ∧ 1o <N 𝑁) → suc 1o𝑁)
10 df-2o 6415 . . . 4 2o = suc 1o
1110sseq1i 3181 . . 3 (2o𝑁 ↔ suc 1o𝑁)
12 pinn 7305 . . . . 5 (𝑁N𝑁 ∈ ω)
13 2onn 6519 . . . . . 6 2o ∈ ω
14 nnawordex 6527 . . . . . 6 ((2o ∈ ω ∧ 𝑁 ∈ ω) → (2o𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁))
1513, 14mpan 424 . . . . 5 (𝑁 ∈ ω → (2o𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁))
1612, 15syl 14 . . . 4 (𝑁N → (2o𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁))
1716adantr 276 . . 3 ((𝑁N ∧ 1o <N 𝑁) → (2o𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁))
1811, 17bitr3id 194 . 2 ((𝑁N ∧ 1o <N 𝑁) → (suc 1o𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁))
199, 18mpbid 147 1 ((𝑁N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wrex 2456  wss 3129   class class class wbr 4002  Ord word 4361  suc csuc 4364  ωcom 4588  (class class class)co 5872  1oc1o 6407  2oc2o 6408   +o coa 6411  Ncnpi 7268   <N clti 7271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-iinf 4586
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-tr 4101  df-eprel 4288  df-id 4292  df-iord 4365  df-on 4367  df-suc 4370  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223  df-ov 5875  df-oprab 5876  df-mpo 5877  df-1st 6138  df-2nd 6139  df-recs 6303  df-irdg 6368  df-1o 6414  df-2o 6415  df-oadd 6418  df-ni 7300  df-lti 7303
This theorem is referenced by:  prarloclem5  7496
  Copyright terms: Public domain W3C validator