ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemn GIF version

Theorem prarloclemn 7500
Description: Subtracting two from a positive integer. Lemma for prarloc 7504. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
prarloclemn ((𝑁N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)
Distinct variable group:   𝑥,𝑁

Proof of Theorem prarloclemn
StepHypRef Expression
1 simpl 109 . . 3 ((𝑁N ∧ 1o <N 𝑁) → 𝑁N)
2 1pi 7316 . . . . 5 1oN
3 ltpiord 7320 . . . . 5 ((1oN𝑁N) → (1o <N 𝑁 ↔ 1o𝑁))
42, 3mpan 424 . . . 4 (𝑁N → (1o <N 𝑁 ↔ 1o𝑁))
54biimpa 296 . . 3 ((𝑁N ∧ 1o <N 𝑁) → 1o𝑁)
6 piord 7312 . . . 4 (𝑁N → Ord 𝑁)
7 ordsucss 4505 . . . 4 (Ord 𝑁 → (1o𝑁 → suc 1o𝑁))
86, 7syl 14 . . 3 (𝑁N → (1o𝑁 → suc 1o𝑁))
91, 5, 8sylc 62 . 2 ((𝑁N ∧ 1o <N 𝑁) → suc 1o𝑁)
10 df-2o 6420 . . . 4 2o = suc 1o
1110sseq1i 3183 . . 3 (2o𝑁 ↔ suc 1o𝑁)
12 pinn 7310 . . . . 5 (𝑁N𝑁 ∈ ω)
13 2onn 6524 . . . . . 6 2o ∈ ω
14 nnawordex 6532 . . . . . 6 ((2o ∈ ω ∧ 𝑁 ∈ ω) → (2o𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁))
1513, 14mpan 424 . . . . 5 (𝑁 ∈ ω → (2o𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁))
1612, 15syl 14 . . . 4 (𝑁N → (2o𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁))
1716adantr 276 . . 3 ((𝑁N ∧ 1o <N 𝑁) → (2o𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁))
1811, 17bitr3id 194 . 2 ((𝑁N ∧ 1o <N 𝑁) → (suc 1o𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁))
199, 18mpbid 147 1 ((𝑁N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wrex 2456  wss 3131   class class class wbr 4005  Ord word 4364  suc csuc 4367  ωcom 4591  (class class class)co 5877  1oc1o 6412  2oc2o 6413   +o coa 6416  Ncnpi 7273   <N clti 7276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-ni 7305  df-lti 7308
This theorem is referenced by:  prarloclem5  7501
  Copyright terms: Public domain W3C validator