![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prarloclemn | GIF version |
Description: Subtracting two from a positive integer. Lemma for prarloc 7212. (Contributed by Jim Kingdon, 5-Nov-2019.) |
Ref | Expression |
---|---|
prarloclemn | ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → 𝑁 ∈ N) | |
2 | 1pi 7024 | . . . . 5 ⊢ 1o ∈ N | |
3 | ltpiord 7028 | . . . . 5 ⊢ ((1o ∈ N ∧ 𝑁 ∈ N) → (1o <N 𝑁 ↔ 1o ∈ 𝑁)) | |
4 | 2, 3 | mpan 418 | . . . 4 ⊢ (𝑁 ∈ N → (1o <N 𝑁 ↔ 1o ∈ 𝑁)) |
5 | 4 | biimpa 292 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → 1o ∈ 𝑁) |
6 | piord 7020 | . . . 4 ⊢ (𝑁 ∈ N → Ord 𝑁) | |
7 | ordsucss 4358 | . . . 4 ⊢ (Ord 𝑁 → (1o ∈ 𝑁 → suc 1o ⊆ 𝑁)) | |
8 | 6, 7 | syl 14 | . . 3 ⊢ (𝑁 ∈ N → (1o ∈ 𝑁 → suc 1o ⊆ 𝑁)) |
9 | 1, 5, 8 | sylc 62 | . 2 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → suc 1o ⊆ 𝑁) |
10 | df-2o 6244 | . . . 4 ⊢ 2o = suc 1o | |
11 | 10 | sseq1i 3073 | . . 3 ⊢ (2o ⊆ 𝑁 ↔ suc 1o ⊆ 𝑁) |
12 | pinn 7018 | . . . . 5 ⊢ (𝑁 ∈ N → 𝑁 ∈ ω) | |
13 | 2onn 6347 | . . . . . 6 ⊢ 2o ∈ ω | |
14 | nnawordex 6354 | . . . . . 6 ⊢ ((2o ∈ ω ∧ 𝑁 ∈ ω) → (2o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) | |
15 | 13, 14 | mpan 418 | . . . . 5 ⊢ (𝑁 ∈ ω → (2o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) |
16 | 12, 15 | syl 14 | . . . 4 ⊢ (𝑁 ∈ N → (2o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) |
17 | 16 | adantr 272 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → (2o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) |
18 | 11, 17 | syl5bbr 193 | . 2 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → (suc 1o ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)) |
19 | 9, 18 | mpbid 146 | 1 ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1299 ∈ wcel 1448 ∃wrex 2376 ⊆ wss 3021 class class class wbr 3875 Ord word 4222 suc csuc 4225 ωcom 4442 (class class class)co 5706 1oc1o 6236 2oc2o 6237 +o coa 6240 Ncnpi 6981 <N clti 6984 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-iinf 4440 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-tr 3967 df-eprel 4149 df-id 4153 df-iord 4226 df-on 4228 df-suc 4231 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-recs 6132 df-irdg 6197 df-1o 6243 df-2o 6244 df-oadd 6247 df-ni 7013 df-lti 7016 |
This theorem is referenced by: prarloclem5 7209 |
Copyright terms: Public domain | W3C validator |