ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdc GIF version

Theorem nninfdc 12408
Description: An unbounded decidable set of positive integers is infinite. (Contributed by Jim Kingdon, 23-Sep-2024.)
Assertion
Ref Expression
nninfdc ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ω ≼ 𝐴)
Distinct variable groups:   𝐴,𝑚,𝑛   𝑥,𝐴

Proof of Theorem nninfdc
Dummy variables 𝑎 𝑏 𝑓 𝑖 𝑦 𝑧 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnenom 10390 . . 3 ℕ ≈ ω
21ensymi 6760 . 2 ω ≈ ℕ
3 breq1 3992 . . . . . . 7 (𝑚 = 1 → (𝑚 < 𝑛 ↔ 1 < 𝑛))
43rexbidv 2471 . . . . . 6 (𝑚 = 1 → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 1 < 𝑛))
5 simp3 994 . . . . . 6 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
6 1nn 8889 . . . . . . 7 1 ∈ ℕ
76a1i 9 . . . . . 6 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 1 ∈ ℕ)
84, 5, 7rspcdva 2839 . . . . 5 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∃𝑛𝐴 1 < 𝑛)
9 breq2 3993 . . . . . 6 (𝑛 = 𝑗 → (1 < 𝑛 ↔ 1 < 𝑗))
109cbvrexv 2697 . . . . 5 (∃𝑛𝐴 1 < 𝑛 ↔ ∃𝑗𝐴 1 < 𝑗)
118, 10sylib 121 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∃𝑗𝐴 1 < 𝑗)
12 simpl1 995 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → 𝐴 ⊆ ℕ)
13 simpl2 996 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
14 simpl3 997 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
15 simpr 109 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → (𝑗𝐴 ∧ 1 < 𝑗))
16 fvoveq1 5876 . . . . . . . . . 10 (𝑎 = 𝑦 → (ℤ‘(𝑎 + 1)) = (ℤ‘(𝑦 + 1)))
1716ineq2d 3328 . . . . . . . . 9 (𝑎 = 𝑦 → (𝐴 ∩ (ℤ‘(𝑎 + 1))) = (𝐴 ∩ (ℤ‘(𝑦 + 1))))
1817infeq1d 6989 . . . . . . . 8 (𝑎 = 𝑦 → inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
19 eqidd 2171 . . . . . . . 8 (𝑏 = 𝑧 → inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
2018, 19cbvmpov 5933 . . . . . . 7 (𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
21 seqeq2 10405 . . . . . . 7 ((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )) → seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)))
2220, 21ax-mp 5 . . . . . 6 seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗))
2312, 13, 14, 15, 22nninfdclemf1 12407 . . . . 5 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1𝐴)
24 seqex 10403 . . . . . 6 seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) ∈ V
25 f1eq1 5398 . . . . . 6 (𝑓 = seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) → (𝑓:ℕ–1-1𝐴 ↔ seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1𝐴))
2624, 25spcev 2825 . . . . 5 (seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1𝐴 → ∃𝑓 𝑓:ℕ–1-1𝐴)
2723, 26syl 14 . . . 4 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → ∃𝑓 𝑓:ℕ–1-1𝐴)
2811, 27rexlimddv 2592 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∃𝑓 𝑓:ℕ–1-1𝐴)
29 nnex 8884 . . . . . 6 ℕ ∈ V
3029ssex 4126 . . . . 5 (𝐴 ⊆ ℕ → 𝐴 ∈ V)
31303ad2ant1 1013 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ∈ V)
32 brdomg 6726 . . . 4 (𝐴 ∈ V → (ℕ ≼ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1𝐴))
3331, 32syl 14 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → (ℕ ≼ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1𝐴))
3428, 33mpbird 166 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ℕ ≼ 𝐴)
35 endomtr 6768 . 2 ((ω ≈ ℕ ∧ ℕ ≼ 𝐴) → ω ≼ 𝐴)
362, 34, 35sylancr 412 1 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ω ≼ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 829  w3a 973   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  Vcvv 2730  cin 3120  wss 3121   class class class wbr 3989  cmpt 4050  ωcom 4574  1-1wf1 5195  cfv 5198  (class class class)co 5853  cmpo 5855  cen 6716  cdom 6717  infcinf 6960  cr 7773  1c1 7775   + caddc 7777   < clt 7954  cn 8878  cuz 9487  seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-er 6513  df-en 6719  df-dom 6720  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-fzo 10099  df-seqfrec 10402
This theorem is referenced by:  unbendc  12409
  Copyright terms: Public domain W3C validator