ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdc GIF version

Theorem nninfdc 12437
Description: An unbounded decidable set of positive integers is infinite. (Contributed by Jim Kingdon, 23-Sep-2024.)
Assertion
Ref Expression
nninfdc ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ω ≼ 𝐴)
Distinct variable groups:   𝐴,𝑚,𝑛   𝑥,𝐴

Proof of Theorem nninfdc
Dummy variables 𝑎 𝑏 𝑓 𝑖 𝑦 𝑧 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnenom 10420 . . 3 ℕ ≈ ω
21ensymi 6776 . 2 ω ≈ ℕ
3 breq1 4003 . . . . . . 7 (𝑚 = 1 → (𝑚 < 𝑛 ↔ 1 < 𝑛))
43rexbidv 2478 . . . . . 6 (𝑚 = 1 → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 1 < 𝑛))
5 simp3 999 . . . . . 6 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
6 1nn 8919 . . . . . . 7 1 ∈ ℕ
76a1i 9 . . . . . 6 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 1 ∈ ℕ)
84, 5, 7rspcdva 2846 . . . . 5 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∃𝑛𝐴 1 < 𝑛)
9 breq2 4004 . . . . . 6 (𝑛 = 𝑗 → (1 < 𝑛 ↔ 1 < 𝑗))
109cbvrexv 2704 . . . . 5 (∃𝑛𝐴 1 < 𝑛 ↔ ∃𝑗𝐴 1 < 𝑗)
118, 10sylib 122 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∃𝑗𝐴 1 < 𝑗)
12 simpl1 1000 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → 𝐴 ⊆ ℕ)
13 simpl2 1001 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
14 simpl3 1002 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
15 simpr 110 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → (𝑗𝐴 ∧ 1 < 𝑗))
16 fvoveq1 5892 . . . . . . . . . 10 (𝑎 = 𝑦 → (ℤ‘(𝑎 + 1)) = (ℤ‘(𝑦 + 1)))
1716ineq2d 3336 . . . . . . . . 9 (𝑎 = 𝑦 → (𝐴 ∩ (ℤ‘(𝑎 + 1))) = (𝐴 ∩ (ℤ‘(𝑦 + 1))))
1817infeq1d 7005 . . . . . . . 8 (𝑎 = 𝑦 → inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
19 eqidd 2178 . . . . . . . 8 (𝑏 = 𝑧 → inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
2018, 19cbvmpov 5949 . . . . . . 7 (𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
21 seqeq2 10435 . . . . . . 7 ((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )) → seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)))
2220, 21ax-mp 5 . . . . . 6 seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗))
2312, 13, 14, 15, 22nninfdclemf1 12436 . . . . 5 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1𝐴)
24 seqex 10433 . . . . . 6 seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) ∈ V
25 f1eq1 5412 . . . . . 6 (𝑓 = seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) → (𝑓:ℕ–1-1𝐴 ↔ seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1𝐴))
2624, 25spcev 2832 . . . . 5 (seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1𝐴 → ∃𝑓 𝑓:ℕ–1-1𝐴)
2723, 26syl 14 . . . 4 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → ∃𝑓 𝑓:ℕ–1-1𝐴)
2811, 27rexlimddv 2599 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∃𝑓 𝑓:ℕ–1-1𝐴)
29 nnex 8914 . . . . . 6 ℕ ∈ V
3029ssex 4137 . . . . 5 (𝐴 ⊆ ℕ → 𝐴 ∈ V)
31303ad2ant1 1018 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ∈ V)
32 brdomg 6742 . . . 4 (𝐴 ∈ V → (ℕ ≼ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1𝐴))
3331, 32syl 14 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → (ℕ ≼ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1𝐴))
3428, 33mpbird 167 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ℕ ≼ 𝐴)
35 endomtr 6784 . 2 ((ω ≈ ℕ ∧ ℕ ≼ 𝐴) → ω ≼ 𝐴)
362, 34, 35sylancr 414 1 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ω ≼ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 834  w3a 978   = wceq 1353  wex 1492  wcel 2148  wral 2455  wrex 2456  Vcvv 2737  cin 3128  wss 3129   class class class wbr 4000  cmpt 4061  ωcom 4586  1-1wf1 5209  cfv 5212  (class class class)co 5869  cmpo 5871  cen 6732  cdom 6733  infcinf 6976  cr 7801  1c1 7803   + caddc 7805   < clt 7982  cn 8908  cuz 9517  seqcseq 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-er 6529  df-en 6735  df-dom 6736  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996  df-fzo 10129  df-seqfrec 10432
This theorem is referenced by:  unbendc  12438
  Copyright terms: Public domain W3C validator