Step | Hyp | Ref
| Expression |
1 | | nnenom 10365 |
. . 3
⊢ ℕ
≈ ω |
2 | 1 | ensymi 6744 |
. 2
⊢ ω
≈ ℕ |
3 | | breq1 3984 |
. . . . . . 7
⊢ (𝑚 = 1 → (𝑚 < 𝑛 ↔ 1 < 𝑛)) |
4 | 3 | rexbidv 2466 |
. . . . . 6
⊢ (𝑚 = 1 → (∃𝑛 ∈ 𝐴 𝑚 < 𝑛 ↔ ∃𝑛 ∈ 𝐴 1 < 𝑛)) |
5 | | simp3 989 |
. . . . . 6
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴 ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
6 | | 1nn 8864 |
. . . . . . 7
⊢ 1 ∈
ℕ |
7 | 6 | a1i 9 |
. . . . . 6
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴 ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → 1 ∈ ℕ) |
8 | 4, 5, 7 | rspcdva 2834 |
. . . . 5
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴 ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → ∃𝑛 ∈ 𝐴 1 < 𝑛) |
9 | | breq2 3985 |
. . . . . 6
⊢ (𝑛 = 𝑗 → (1 < 𝑛 ↔ 1 < 𝑗)) |
10 | 9 | cbvrexv 2692 |
. . . . 5
⊢
(∃𝑛 ∈
𝐴 1 < 𝑛 ↔ ∃𝑗 ∈ 𝐴 1 < 𝑗) |
11 | 8, 10 | sylib 121 |
. . . 4
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴 ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → ∃𝑗 ∈ 𝐴 1 < 𝑗) |
12 | | simpl1 990 |
. . . . . 6
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴 ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑗 ∈ 𝐴 ∧ 1 < 𝑗)) → 𝐴 ⊆ ℕ) |
13 | | simpl2 991 |
. . . . . 6
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴 ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑗 ∈ 𝐴 ∧ 1 < 𝑗)) → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
14 | | simpl3 992 |
. . . . . 6
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴 ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑗 ∈ 𝐴 ∧ 1 < 𝑗)) → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
15 | | simpr 109 |
. . . . . 6
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴 ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑗 ∈ 𝐴 ∧ 1 < 𝑗)) → (𝑗 ∈ 𝐴 ∧ 1 < 𝑗)) |
16 | | fvoveq1 5864 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑦 → (ℤ≥‘(𝑎 + 1)) =
(ℤ≥‘(𝑦 + 1))) |
17 | 16 | ineq2d 3322 |
. . . . . . . . 9
⊢ (𝑎 = 𝑦 → (𝐴 ∩ (ℤ≥‘(𝑎 + 1))) = (𝐴 ∩ (ℤ≥‘(𝑦 + 1)))) |
18 | 17 | infeq1d 6973 |
. . . . . . . 8
⊢ (𝑎 = 𝑦 → inf((𝐴 ∩ (ℤ≥‘(𝑎 + 1))), ℝ, < ) =
inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < )) |
19 | | eqidd 2166 |
. . . . . . . 8
⊢ (𝑏 = 𝑧 → inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < ) =
inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < )) |
20 | 18, 19 | cbvmpov 5918 |
. . . . . . 7
⊢ (𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦
inf((𝐴 ∩
(ℤ≥‘(𝑎 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦
inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < )) |
21 | | seqeq2 10380 |
. . . . . . 7
⊢ ((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦
inf((𝐴 ∩
(ℤ≥‘(𝑎 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦
inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < )) → seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦
inf((𝐴 ∩
(ℤ≥‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗))) |
22 | 20, 21 | ax-mp 5 |
. . . . . 6
⊢
seq1((𝑎 ∈
ℕ, 𝑏 ∈ ℕ
↦ inf((𝐴 ∩
(ℤ≥‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) |
23 | 12, 13, 14, 15, 22 | nninfdclemf1 12381 |
. . . . 5
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴 ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑗 ∈ 𝐴 ∧ 1 < 𝑗)) → seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩
(ℤ≥‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1→𝐴) |
24 | | seqex 10378 |
. . . . . 6
⊢
seq1((𝑎 ∈
ℕ, 𝑏 ∈ ℕ
↦ inf((𝐴 ∩
(ℤ≥‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) ∈ V |
25 | | f1eq1 5387 |
. . . . . 6
⊢ (𝑓 = seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩
(ℤ≥‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) → (𝑓:ℕ–1-1→𝐴 ↔ seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩
(ℤ≥‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1→𝐴)) |
26 | 24, 25 | spcev 2820 |
. . . . 5
⊢
(seq1((𝑎 ∈
ℕ, 𝑏 ∈ ℕ
↦ inf((𝐴 ∩
(ℤ≥‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1→𝐴 → ∃𝑓 𝑓:ℕ–1-1→𝐴) |
27 | 23, 26 | syl 14 |
. . . 4
⊢ (((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴 ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑗 ∈ 𝐴 ∧ 1 < 𝑗)) → ∃𝑓 𝑓:ℕ–1-1→𝐴) |
28 | 11, 27 | rexlimddv 2587 |
. . 3
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴 ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → ∃𝑓 𝑓:ℕ–1-1→𝐴) |
29 | | nnex 8859 |
. . . . . 6
⊢ ℕ
∈ V |
30 | 29 | ssex 4118 |
. . . . 5
⊢ (𝐴 ⊆ ℕ → 𝐴 ∈ V) |
31 | 30 | 3ad2ant1 1008 |
. . . 4
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴 ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → 𝐴 ∈ V) |
32 | | brdomg 6710 |
. . . 4
⊢ (𝐴 ∈ V → (ℕ
≼ 𝐴 ↔
∃𝑓 𝑓:ℕ–1-1→𝐴)) |
33 | 31, 32 | syl 14 |
. . 3
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴 ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → (ℕ ≼ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1→𝐴)) |
34 | 28, 33 | mpbird 166 |
. 2
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴 ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → ℕ ≼ 𝐴) |
35 | | endomtr 6752 |
. 2
⊢ ((ω
≈ ℕ ∧ ℕ ≼ 𝐴) → ω ≼ 𝐴) |
36 | 2, 34, 35 | sylancr 411 |
1
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴 ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → ω ≼ 𝐴) |