ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdc GIF version

Theorem nninfdc 12382
Description: An unbounded decidable set of positive integers is infinite. (Contributed by Jim Kingdon, 23-Sep-2024.)
Assertion
Ref Expression
nninfdc ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ω ≼ 𝐴)
Distinct variable groups:   𝐴,𝑚,𝑛   𝑥,𝐴

Proof of Theorem nninfdc
Dummy variables 𝑎 𝑏 𝑓 𝑖 𝑦 𝑧 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnenom 10365 . . 3 ℕ ≈ ω
21ensymi 6744 . 2 ω ≈ ℕ
3 breq1 3984 . . . . . . 7 (𝑚 = 1 → (𝑚 < 𝑛 ↔ 1 < 𝑛))
43rexbidv 2466 . . . . . 6 (𝑚 = 1 → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 1 < 𝑛))
5 simp3 989 . . . . . 6 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
6 1nn 8864 . . . . . . 7 1 ∈ ℕ
76a1i 9 . . . . . 6 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 1 ∈ ℕ)
84, 5, 7rspcdva 2834 . . . . 5 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∃𝑛𝐴 1 < 𝑛)
9 breq2 3985 . . . . . 6 (𝑛 = 𝑗 → (1 < 𝑛 ↔ 1 < 𝑗))
109cbvrexv 2692 . . . . 5 (∃𝑛𝐴 1 < 𝑛 ↔ ∃𝑗𝐴 1 < 𝑗)
118, 10sylib 121 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∃𝑗𝐴 1 < 𝑗)
12 simpl1 990 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → 𝐴 ⊆ ℕ)
13 simpl2 991 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
14 simpl3 992 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
15 simpr 109 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → (𝑗𝐴 ∧ 1 < 𝑗))
16 fvoveq1 5864 . . . . . . . . . 10 (𝑎 = 𝑦 → (ℤ‘(𝑎 + 1)) = (ℤ‘(𝑦 + 1)))
1716ineq2d 3322 . . . . . . . . 9 (𝑎 = 𝑦 → (𝐴 ∩ (ℤ‘(𝑎 + 1))) = (𝐴 ∩ (ℤ‘(𝑦 + 1))))
1817infeq1d 6973 . . . . . . . 8 (𝑎 = 𝑦 → inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
19 eqidd 2166 . . . . . . . 8 (𝑏 = 𝑧 → inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
2018, 19cbvmpov 5918 . . . . . . 7 (𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
21 seqeq2 10380 . . . . . . 7 ((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )) → seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)))
2220, 21ax-mp 5 . . . . . 6 seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗))
2312, 13, 14, 15, 22nninfdclemf1 12381 . . . . 5 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1𝐴)
24 seqex 10378 . . . . . 6 seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) ∈ V
25 f1eq1 5387 . . . . . 6 (𝑓 = seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) → (𝑓:ℕ–1-1𝐴 ↔ seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1𝐴))
2624, 25spcev 2820 . . . . 5 (seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1𝐴 → ∃𝑓 𝑓:ℕ–1-1𝐴)
2723, 26syl 14 . . . 4 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → ∃𝑓 𝑓:ℕ–1-1𝐴)
2811, 27rexlimddv 2587 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∃𝑓 𝑓:ℕ–1-1𝐴)
29 nnex 8859 . . . . . 6 ℕ ∈ V
3029ssex 4118 . . . . 5 (𝐴 ⊆ ℕ → 𝐴 ∈ V)
31303ad2ant1 1008 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ∈ V)
32 brdomg 6710 . . . 4 (𝐴 ∈ V → (ℕ ≼ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1𝐴))
3331, 32syl 14 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → (ℕ ≼ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1𝐴))
3428, 33mpbird 166 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ℕ ≼ 𝐴)
35 endomtr 6752 . 2 ((ω ≈ ℕ ∧ ℕ ≼ 𝐴) → ω ≼ 𝐴)
362, 34, 35sylancr 411 1 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ω ≼ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 824  w3a 968   = wceq 1343  wex 1480  wcel 2136  wral 2443  wrex 2444  Vcvv 2725  cin 3114  wss 3115   class class class wbr 3981  cmpt 4042  ωcom 4566  1-1wf1 5184  cfv 5187  (class class class)co 5841  cmpo 5843  cen 6700  cdom 6701  infcinf 6944  cr 7748  1c1 7750   + caddc 7752   < clt 7929  cn 8853  cuz 9462  seqcseq 10376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-er 6497  df-en 6703  df-dom 6704  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-inn 8854  df-n0 9111  df-z 9188  df-uz 9463  df-fz 9941  df-fzo 10074  df-seqfrec 10377
This theorem is referenced by:  unbendc  12383
  Copyright terms: Public domain W3C validator