ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdc GIF version

Theorem nninfdc 12766
Description: An unbounded decidable set of positive integers is infinite. (Contributed by Jim Kingdon, 23-Sep-2024.)
Assertion
Ref Expression
nninfdc ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ω ≼ 𝐴)
Distinct variable groups:   𝐴,𝑚,𝑛   𝑥,𝐴

Proof of Theorem nninfdc
Dummy variables 𝑎 𝑏 𝑓 𝑖 𝑦 𝑧 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnenom 10577 . . 3 ℕ ≈ ω
21ensymi 6873 . 2 ω ≈ ℕ
3 breq1 4046 . . . . . . 7 (𝑚 = 1 → (𝑚 < 𝑛 ↔ 1 < 𝑛))
43rexbidv 2506 . . . . . 6 (𝑚 = 1 → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 1 < 𝑛))
5 simp3 1001 . . . . . 6 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
6 1nn 9046 . . . . . . 7 1 ∈ ℕ
76a1i 9 . . . . . 6 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 1 ∈ ℕ)
84, 5, 7rspcdva 2881 . . . . 5 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∃𝑛𝐴 1 < 𝑛)
9 breq2 4047 . . . . . 6 (𝑛 = 𝑗 → (1 < 𝑛 ↔ 1 < 𝑗))
109cbvrexv 2738 . . . . 5 (∃𝑛𝐴 1 < 𝑛 ↔ ∃𝑗𝐴 1 < 𝑗)
118, 10sylib 122 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∃𝑗𝐴 1 < 𝑗)
12 simpl1 1002 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → 𝐴 ⊆ ℕ)
13 simpl2 1003 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
14 simpl3 1004 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
15 simpr 110 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → (𝑗𝐴 ∧ 1 < 𝑗))
16 fvoveq1 5966 . . . . . . . . . 10 (𝑎 = 𝑦 → (ℤ‘(𝑎 + 1)) = (ℤ‘(𝑦 + 1)))
1716ineq2d 3373 . . . . . . . . 9 (𝑎 = 𝑦 → (𝐴 ∩ (ℤ‘(𝑎 + 1))) = (𝐴 ∩ (ℤ‘(𝑦 + 1))))
1817infeq1d 7113 . . . . . . . 8 (𝑎 = 𝑦 → inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
19 eqidd 2205 . . . . . . . 8 (𝑏 = 𝑧 → inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
2018, 19cbvmpov 6024 . . . . . . 7 (𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
21 seqeq2 10594 . . . . . . 7 ((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )) → seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)))
2220, 21ax-mp 5 . . . . . 6 seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗))
2312, 13, 14, 15, 22nninfdclemf1 12765 . . . . 5 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1𝐴)
24 seqex 10592 . . . . . 6 seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) ∈ V
25 f1eq1 5475 . . . . . 6 (𝑓 = seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) → (𝑓:ℕ–1-1𝐴 ↔ seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1𝐴))
2624, 25spcev 2867 . . . . 5 (seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1𝐴 → ∃𝑓 𝑓:ℕ–1-1𝐴)
2723, 26syl 14 . . . 4 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → ∃𝑓 𝑓:ℕ–1-1𝐴)
2811, 27rexlimddv 2627 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∃𝑓 𝑓:ℕ–1-1𝐴)
29 nnex 9041 . . . . . 6 ℕ ∈ V
3029ssex 4180 . . . . 5 (𝐴 ⊆ ℕ → 𝐴 ∈ V)
31303ad2ant1 1020 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ∈ V)
32 brdomg 6836 . . . 4 (𝐴 ∈ V → (ℕ ≼ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1𝐴))
3331, 32syl 14 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → (ℕ ≼ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1𝐴))
3428, 33mpbird 167 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ℕ ≼ 𝐴)
35 endomtr 6881 . 2 ((ω ≈ ℕ ∧ ℕ ≼ 𝐴) → ω ≼ 𝐴)
362, 34, 35sylancr 414 1 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ω ≼ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835  w3a 980   = wceq 1372  wex 1514  wcel 2175  wral 2483  wrex 2484  Vcvv 2771  cin 3164  wss 3165   class class class wbr 4043  cmpt 4104  ωcom 4637  1-1wf1 5267  cfv 5270  (class class class)co 5943  cmpo 5945  cen 6824  cdom 6825  infcinf 7084  cr 7923  1c1 7925   + caddc 7927   < clt 8106  cn 9035  cuz 9647  seqcseq 10590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-er 6619  df-en 6827  df-dom 6828  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-fzo 10264  df-seqfrec 10591
This theorem is referenced by:  unbendc  12767
  Copyright terms: Public domain W3C validator