ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdc GIF version

Theorem nninfdc 12401
Description: An unbounded decidable set of positive integers is infinite. (Contributed by Jim Kingdon, 23-Sep-2024.)
Assertion
Ref Expression
nninfdc ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ω ≼ 𝐴)
Distinct variable groups:   𝐴,𝑚,𝑛   𝑥,𝐴

Proof of Theorem nninfdc
Dummy variables 𝑎 𝑏 𝑓 𝑖 𝑦 𝑧 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnenom 10383 . . 3 ℕ ≈ ω
21ensymi 6758 . 2 ω ≈ ℕ
3 breq1 3990 . . . . . . 7 (𝑚 = 1 → (𝑚 < 𝑛 ↔ 1 < 𝑛))
43rexbidv 2471 . . . . . 6 (𝑚 = 1 → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 1 < 𝑛))
5 simp3 994 . . . . . 6 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
6 1nn 8882 . . . . . . 7 1 ∈ ℕ
76a1i 9 . . . . . 6 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 1 ∈ ℕ)
84, 5, 7rspcdva 2839 . . . . 5 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∃𝑛𝐴 1 < 𝑛)
9 breq2 3991 . . . . . 6 (𝑛 = 𝑗 → (1 < 𝑛 ↔ 1 < 𝑗))
109cbvrexv 2697 . . . . 5 (∃𝑛𝐴 1 < 𝑛 ↔ ∃𝑗𝐴 1 < 𝑗)
118, 10sylib 121 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∃𝑗𝐴 1 < 𝑗)
12 simpl1 995 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → 𝐴 ⊆ ℕ)
13 simpl2 996 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
14 simpl3 997 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
15 simpr 109 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → (𝑗𝐴 ∧ 1 < 𝑗))
16 fvoveq1 5874 . . . . . . . . . 10 (𝑎 = 𝑦 → (ℤ‘(𝑎 + 1)) = (ℤ‘(𝑦 + 1)))
1716ineq2d 3328 . . . . . . . . 9 (𝑎 = 𝑦 → (𝐴 ∩ (ℤ‘(𝑎 + 1))) = (𝐴 ∩ (ℤ‘(𝑦 + 1))))
1817infeq1d 6987 . . . . . . . 8 (𝑎 = 𝑦 → inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
19 eqidd 2171 . . . . . . . 8 (𝑏 = 𝑧 → inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
2018, 19cbvmpov 5931 . . . . . . 7 (𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
21 seqeq2 10398 . . . . . . 7 ((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )) → seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)))
2220, 21ax-mp 5 . . . . . 6 seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗))
2312, 13, 14, 15, 22nninfdclemf1 12400 . . . . 5 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1𝐴)
24 seqex 10396 . . . . . 6 seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) ∈ V
25 f1eq1 5396 . . . . . 6 (𝑓 = seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)) → (𝑓:ℕ–1-1𝐴 ↔ seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1𝐴))
2624, 25spcev 2825 . . . . 5 (seq1((𝑎 ∈ ℕ, 𝑏 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑎 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝑗)):ℕ–1-1𝐴 → ∃𝑓 𝑓:ℕ–1-1𝐴)
2723, 26syl 14 . . . 4 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) ∧ (𝑗𝐴 ∧ 1 < 𝑗)) → ∃𝑓 𝑓:ℕ–1-1𝐴)
2811, 27rexlimddv 2592 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∃𝑓 𝑓:ℕ–1-1𝐴)
29 nnex 8877 . . . . . 6 ℕ ∈ V
3029ssex 4124 . . . . 5 (𝐴 ⊆ ℕ → 𝐴 ∈ V)
31303ad2ant1 1013 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ∈ V)
32 brdomg 6724 . . . 4 (𝐴 ∈ V → (ℕ ≼ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1𝐴))
3331, 32syl 14 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → (ℕ ≼ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1𝐴))
3428, 33mpbird 166 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ℕ ≼ 𝐴)
35 endomtr 6766 . 2 ((ω ≈ ℕ ∧ ℕ ≼ 𝐴) → ω ≼ 𝐴)
362, 34, 35sylancr 412 1 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ω ≼ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 829  w3a 973   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  Vcvv 2730  cin 3120  wss 3121   class class class wbr 3987  cmpt 4048  ωcom 4572  1-1wf1 5193  cfv 5196  (class class class)co 5851  cmpo 5853  cen 6714  cdom 6715  infcinf 6958  cr 7766  1c1 7768   + caddc 7770   < clt 7947  cn 8871  cuz 9480  seqcseq 10394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-addcom 7867  ax-addass 7869  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-0id 7875  ax-rnegex 7876  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-er 6511  df-en 6717  df-dom 6718  df-sup 6959  df-inf 6960  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-inn 8872  df-n0 9129  df-z 9206  df-uz 9481  df-fz 9959  df-fzo 10092  df-seqfrec 10395
This theorem is referenced by:  unbendc  12402
  Copyright terms: Public domain W3C validator