ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elnn GIF version

Theorem 0elnn 4710
Description: A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.)
Assertion
Ref Expression
0elnn (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))

Proof of Theorem 0elnn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2236 . . 3 (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅))
2 eleq2 2293 . . 3 (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅))
31, 2orbi12d 798 . 2 (𝑥 = ∅ → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (∅ = ∅ ∨ ∅ ∈ ∅)))
4 eqeq1 2236 . . 3 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
5 eleq2 2293 . . 3 (𝑥 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑦))
64, 5orbi12d 798 . 2 (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (𝑦 = ∅ ∨ ∅ ∈ 𝑦)))
7 eqeq1 2236 . . 3 (𝑥 = suc 𝑦 → (𝑥 = ∅ ↔ suc 𝑦 = ∅))
8 eleq2 2293 . . 3 (𝑥 = suc 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ suc 𝑦))
97, 8orbi12d 798 . 2 (𝑥 = suc 𝑦 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦)))
10 eqeq1 2236 . . 3 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
11 eleq2 2293 . . 3 (𝑥 = 𝐴 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝐴))
1210, 11orbi12d 798 . 2 (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)))
13 eqid 2229 . . 3 ∅ = ∅
1413orci 736 . 2 (∅ = ∅ ∨ ∅ ∈ ∅)
15 0ex 4210 . . . . . . 7 ∅ ∈ V
1615sucid 4507 . . . . . 6 ∅ ∈ suc ∅
17 suceq 4492 . . . . . 6 (𝑦 = ∅ → suc 𝑦 = suc ∅)
1816, 17eleqtrrid 2319 . . . . 5 (𝑦 = ∅ → ∅ ∈ suc 𝑦)
1918a1i 9 . . . 4 (𝑦 ∈ ω → (𝑦 = ∅ → ∅ ∈ suc 𝑦))
20 sssucid 4505 . . . . . 6 𝑦 ⊆ suc 𝑦
2120a1i 9 . . . . 5 (𝑦 ∈ ω → 𝑦 ⊆ suc 𝑦)
2221sseld 3223 . . . 4 (𝑦 ∈ ω → (∅ ∈ 𝑦 → ∅ ∈ suc 𝑦))
2319, 22jaod 722 . . 3 (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ∅ ∈ 𝑦) → ∅ ∈ suc 𝑦))
24 olc 716 . . 3 (∅ ∈ suc 𝑦 → (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦))
2523, 24syl6 33 . 2 (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ∅ ∈ 𝑦) → (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦)))
263, 6, 9, 12, 14, 25finds 4691 1 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 713   = wceq 1395  wcel 2200  wss 3197  c0 3491  suc csuc 4455  ωcom 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-int 3923  df-suc 4461  df-iom 4682
This theorem is referenced by:  nn0eln0  4711  nnsucsssuc  6636  nntri3or  6637  nnm00  6674  ssfilem  7033  diffitest  7045  fiintim  7089  enumct  7278  nnnninfeq  7291  elni2  7497  enq0tr  7617  bj-charfunr  16131
  Copyright terms: Public domain W3C validator