ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elnn GIF version

Theorem 0elnn 4590
Description: A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.)
Assertion
Ref Expression
0elnn (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))

Proof of Theorem 0elnn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2171 . . 3 (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅))
2 eleq2 2228 . . 3 (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅))
31, 2orbi12d 783 . 2 (𝑥 = ∅ → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (∅ = ∅ ∨ ∅ ∈ ∅)))
4 eqeq1 2171 . . 3 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
5 eleq2 2228 . . 3 (𝑥 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑦))
64, 5orbi12d 783 . 2 (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (𝑦 = ∅ ∨ ∅ ∈ 𝑦)))
7 eqeq1 2171 . . 3 (𝑥 = suc 𝑦 → (𝑥 = ∅ ↔ suc 𝑦 = ∅))
8 eleq2 2228 . . 3 (𝑥 = suc 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ suc 𝑦))
97, 8orbi12d 783 . 2 (𝑥 = suc 𝑦 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦)))
10 eqeq1 2171 . . 3 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
11 eleq2 2228 . . 3 (𝑥 = 𝐴 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝐴))
1210, 11orbi12d 783 . 2 (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)))
13 eqid 2164 . . 3 ∅ = ∅
1413orci 721 . 2 (∅ = ∅ ∨ ∅ ∈ ∅)
15 0ex 4103 . . . . . . 7 ∅ ∈ V
1615sucid 4389 . . . . . 6 ∅ ∈ suc ∅
17 suceq 4374 . . . . . 6 (𝑦 = ∅ → suc 𝑦 = suc ∅)
1816, 17eleqtrrid 2254 . . . . 5 (𝑦 = ∅ → ∅ ∈ suc 𝑦)
1918a1i 9 . . . 4 (𝑦 ∈ ω → (𝑦 = ∅ → ∅ ∈ suc 𝑦))
20 sssucid 4387 . . . . . 6 𝑦 ⊆ suc 𝑦
2120a1i 9 . . . . 5 (𝑦 ∈ ω → 𝑦 ⊆ suc 𝑦)
2221sseld 3136 . . . 4 (𝑦 ∈ ω → (∅ ∈ 𝑦 → ∅ ∈ suc 𝑦))
2319, 22jaod 707 . . 3 (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ∅ ∈ 𝑦) → ∅ ∈ suc 𝑦))
24 olc 701 . . 3 (∅ ∈ suc 𝑦 → (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦))
2523, 24syl6 33 . 2 (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ∅ ∈ 𝑦) → (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦)))
263, 6, 9, 12, 14, 25finds 4571 1 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698   = wceq 1342  wcel 2135  wss 3111  c0 3404  suc csuc 4337  ωcom 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-uni 3784  df-int 3819  df-suc 4343  df-iom 4562
This theorem is referenced by:  nn0eln0  4591  nnsucsssuc  6451  nntri3or  6452  nnm00  6488  ssfilem  6832  diffitest  6844  fiintim  6885  enumct  7071  nnnninfeq  7083  elni2  7246  enq0tr  7366  bj-charfunr  13527
  Copyright terms: Public domain W3C validator