| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0elnn | GIF version | ||
| Description: A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.) |
| Ref | Expression |
|---|---|
| 0elnn | ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2203 | . . 3 ⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅)) | |
| 2 | eleq2 2260 | . . 3 ⊢ (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅)) | |
| 3 | 1, 2 | orbi12d 794 | . 2 ⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (∅ = ∅ ∨ ∅ ∈ ∅))) |
| 4 | eqeq1 2203 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) | |
| 5 | eleq2 2260 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑦)) | |
| 6 | 4, 5 | orbi12d 794 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (𝑦 = ∅ ∨ ∅ ∈ 𝑦))) |
| 7 | eqeq1 2203 | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝑥 = ∅ ↔ suc 𝑦 = ∅)) | |
| 8 | eleq2 2260 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ suc 𝑦)) | |
| 9 | 7, 8 | orbi12d 794 | . 2 ⊢ (𝑥 = suc 𝑦 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦))) |
| 10 | eqeq1 2203 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) | |
| 11 | eleq2 2260 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝐴)) | |
| 12 | 10, 11 | orbi12d 794 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴))) |
| 13 | eqid 2196 | . . 3 ⊢ ∅ = ∅ | |
| 14 | 13 | orci 732 | . 2 ⊢ (∅ = ∅ ∨ ∅ ∈ ∅) |
| 15 | 0ex 4160 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 16 | 15 | sucid 4452 | . . . . . 6 ⊢ ∅ ∈ suc ∅ |
| 17 | suceq 4437 | . . . . . 6 ⊢ (𝑦 = ∅ → suc 𝑦 = suc ∅) | |
| 18 | 16, 17 | eleqtrrid 2286 | . . . . 5 ⊢ (𝑦 = ∅ → ∅ ∈ suc 𝑦) |
| 19 | 18 | a1i 9 | . . . 4 ⊢ (𝑦 ∈ ω → (𝑦 = ∅ → ∅ ∈ suc 𝑦)) |
| 20 | sssucid 4450 | . . . . . 6 ⊢ 𝑦 ⊆ suc 𝑦 | |
| 21 | 20 | a1i 9 | . . . . 5 ⊢ (𝑦 ∈ ω → 𝑦 ⊆ suc 𝑦) |
| 22 | 21 | sseld 3182 | . . . 4 ⊢ (𝑦 ∈ ω → (∅ ∈ 𝑦 → ∅ ∈ suc 𝑦)) |
| 23 | 19, 22 | jaod 718 | . . 3 ⊢ (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ∅ ∈ 𝑦) → ∅ ∈ suc 𝑦)) |
| 24 | olc 712 | . . 3 ⊢ (∅ ∈ suc 𝑦 → (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦)) | |
| 25 | 23, 24 | syl6 33 | . 2 ⊢ (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ∅ ∈ 𝑦) → (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦))) |
| 26 | 3, 6, 9, 12, 14, 25 | finds 4636 | 1 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 ∅c0 3450 suc csuc 4400 ωcom 4626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 |
| This theorem is referenced by: nn0eln0 4656 nnsucsssuc 6550 nntri3or 6551 nnm00 6588 ssfilem 6936 diffitest 6948 fiintim 6992 enumct 7181 nnnninfeq 7194 elni2 7381 enq0tr 7501 bj-charfunr 15456 |
| Copyright terms: Public domain | W3C validator |