| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0elnn | GIF version | ||
| Description: A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.) |
| Ref | Expression |
|---|---|
| 0elnn | ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2213 | . . 3 ⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅)) | |
| 2 | eleq2 2270 | . . 3 ⊢ (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅)) | |
| 3 | 1, 2 | orbi12d 795 | . 2 ⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (∅ = ∅ ∨ ∅ ∈ ∅))) |
| 4 | eqeq1 2213 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) | |
| 5 | eleq2 2270 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑦)) | |
| 6 | 4, 5 | orbi12d 795 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (𝑦 = ∅ ∨ ∅ ∈ 𝑦))) |
| 7 | eqeq1 2213 | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝑥 = ∅ ↔ suc 𝑦 = ∅)) | |
| 8 | eleq2 2270 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ suc 𝑦)) | |
| 9 | 7, 8 | orbi12d 795 | . 2 ⊢ (𝑥 = suc 𝑦 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦))) |
| 10 | eqeq1 2213 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) | |
| 11 | eleq2 2270 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝐴)) | |
| 12 | 10, 11 | orbi12d 795 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴))) |
| 13 | eqid 2206 | . . 3 ⊢ ∅ = ∅ | |
| 14 | 13 | orci 733 | . 2 ⊢ (∅ = ∅ ∨ ∅ ∈ ∅) |
| 15 | 0ex 4179 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 16 | 15 | sucid 4472 | . . . . . 6 ⊢ ∅ ∈ suc ∅ |
| 17 | suceq 4457 | . . . . . 6 ⊢ (𝑦 = ∅ → suc 𝑦 = suc ∅) | |
| 18 | 16, 17 | eleqtrrid 2296 | . . . . 5 ⊢ (𝑦 = ∅ → ∅ ∈ suc 𝑦) |
| 19 | 18 | a1i 9 | . . . 4 ⊢ (𝑦 ∈ ω → (𝑦 = ∅ → ∅ ∈ suc 𝑦)) |
| 20 | sssucid 4470 | . . . . . 6 ⊢ 𝑦 ⊆ suc 𝑦 | |
| 21 | 20 | a1i 9 | . . . . 5 ⊢ (𝑦 ∈ ω → 𝑦 ⊆ suc 𝑦) |
| 22 | 21 | sseld 3196 | . . . 4 ⊢ (𝑦 ∈ ω → (∅ ∈ 𝑦 → ∅ ∈ suc 𝑦)) |
| 23 | 19, 22 | jaod 719 | . . 3 ⊢ (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ∅ ∈ 𝑦) → ∅ ∈ suc 𝑦)) |
| 24 | olc 713 | . . 3 ⊢ (∅ ∈ suc 𝑦 → (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦)) | |
| 25 | 23, 24 | syl6 33 | . 2 ⊢ (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ∅ ∈ 𝑦) → (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦))) |
| 26 | 3, 6, 9, 12, 14, 25 | finds 4656 | 1 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 = wceq 1373 ∈ wcel 2177 ⊆ wss 3170 ∅c0 3464 suc csuc 4420 ωcom 4646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3857 df-int 3892 df-suc 4426 df-iom 4647 |
| This theorem is referenced by: nn0eln0 4676 nnsucsssuc 6591 nntri3or 6592 nnm00 6629 ssfilem 6987 diffitest 6999 fiintim 7043 enumct 7232 nnnninfeq 7245 elni2 7447 enq0tr 7567 bj-charfunr 15884 |
| Copyright terms: Public domain | W3C validator |