ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elnn GIF version

Theorem 0elnn 4601
Description: A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.)
Assertion
Ref Expression
0elnn (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))

Proof of Theorem 0elnn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2177 . . 3 (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅))
2 eleq2 2234 . . 3 (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅))
31, 2orbi12d 788 . 2 (𝑥 = ∅ → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (∅ = ∅ ∨ ∅ ∈ ∅)))
4 eqeq1 2177 . . 3 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
5 eleq2 2234 . . 3 (𝑥 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑦))
64, 5orbi12d 788 . 2 (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (𝑦 = ∅ ∨ ∅ ∈ 𝑦)))
7 eqeq1 2177 . . 3 (𝑥 = suc 𝑦 → (𝑥 = ∅ ↔ suc 𝑦 = ∅))
8 eleq2 2234 . . 3 (𝑥 = suc 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ suc 𝑦))
97, 8orbi12d 788 . 2 (𝑥 = suc 𝑦 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦)))
10 eqeq1 2177 . . 3 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
11 eleq2 2234 . . 3 (𝑥 = 𝐴 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝐴))
1210, 11orbi12d 788 . 2 (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)))
13 eqid 2170 . . 3 ∅ = ∅
1413orci 726 . 2 (∅ = ∅ ∨ ∅ ∈ ∅)
15 0ex 4114 . . . . . . 7 ∅ ∈ V
1615sucid 4400 . . . . . 6 ∅ ∈ suc ∅
17 suceq 4385 . . . . . 6 (𝑦 = ∅ → suc 𝑦 = suc ∅)
1816, 17eleqtrrid 2260 . . . . 5 (𝑦 = ∅ → ∅ ∈ suc 𝑦)
1918a1i 9 . . . 4 (𝑦 ∈ ω → (𝑦 = ∅ → ∅ ∈ suc 𝑦))
20 sssucid 4398 . . . . . 6 𝑦 ⊆ suc 𝑦
2120a1i 9 . . . . 5 (𝑦 ∈ ω → 𝑦 ⊆ suc 𝑦)
2221sseld 3146 . . . 4 (𝑦 ∈ ω → (∅ ∈ 𝑦 → ∅ ∈ suc 𝑦))
2319, 22jaod 712 . . 3 (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ∅ ∈ 𝑦) → ∅ ∈ suc 𝑦))
24 olc 706 . . 3 (∅ ∈ suc 𝑦 → (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦))
2523, 24syl6 33 . 2 (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ∅ ∈ 𝑦) → (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦)))
263, 6, 9, 12, 14, 25finds 4582 1 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 703   = wceq 1348  wcel 2141  wss 3121  c0 3414  suc csuc 4348  ωcom 4572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-uni 3795  df-int 3830  df-suc 4354  df-iom 4573
This theorem is referenced by:  nn0eln0  4602  nnsucsssuc  6468  nntri3or  6469  nnm00  6505  ssfilem  6849  diffitest  6861  fiintim  6902  enumct  7088  nnnninfeq  7100  elni2  7263  enq0tr  7383  bj-charfunr  13767
  Copyright terms: Public domain W3C validator