![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0elnn | GIF version |
Description: A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.) |
Ref | Expression |
---|---|
0elnn | ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2200 | . . 3 ⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅)) | |
2 | eleq2 2257 | . . 3 ⊢ (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅)) | |
3 | 1, 2 | orbi12d 794 | . 2 ⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (∅ = ∅ ∨ ∅ ∈ ∅))) |
4 | eqeq1 2200 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) | |
5 | eleq2 2257 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑦)) | |
6 | 4, 5 | orbi12d 794 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (𝑦 = ∅ ∨ ∅ ∈ 𝑦))) |
7 | eqeq1 2200 | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝑥 = ∅ ↔ suc 𝑦 = ∅)) | |
8 | eleq2 2257 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ suc 𝑦)) | |
9 | 7, 8 | orbi12d 794 | . 2 ⊢ (𝑥 = suc 𝑦 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦))) |
10 | eqeq1 2200 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) | |
11 | eleq2 2257 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝐴)) | |
12 | 10, 11 | orbi12d 794 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴))) |
13 | eqid 2193 | . . 3 ⊢ ∅ = ∅ | |
14 | 13 | orci 732 | . 2 ⊢ (∅ = ∅ ∨ ∅ ∈ ∅) |
15 | 0ex 4156 | . . . . . . 7 ⊢ ∅ ∈ V | |
16 | 15 | sucid 4448 | . . . . . 6 ⊢ ∅ ∈ suc ∅ |
17 | suceq 4433 | . . . . . 6 ⊢ (𝑦 = ∅ → suc 𝑦 = suc ∅) | |
18 | 16, 17 | eleqtrrid 2283 | . . . . 5 ⊢ (𝑦 = ∅ → ∅ ∈ suc 𝑦) |
19 | 18 | a1i 9 | . . . 4 ⊢ (𝑦 ∈ ω → (𝑦 = ∅ → ∅ ∈ suc 𝑦)) |
20 | sssucid 4446 | . . . . . 6 ⊢ 𝑦 ⊆ suc 𝑦 | |
21 | 20 | a1i 9 | . . . . 5 ⊢ (𝑦 ∈ ω → 𝑦 ⊆ suc 𝑦) |
22 | 21 | sseld 3178 | . . . 4 ⊢ (𝑦 ∈ ω → (∅ ∈ 𝑦 → ∅ ∈ suc 𝑦)) |
23 | 19, 22 | jaod 718 | . . 3 ⊢ (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ∅ ∈ 𝑦) → ∅ ∈ suc 𝑦)) |
24 | olc 712 | . . 3 ⊢ (∅ ∈ suc 𝑦 → (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦)) | |
25 | 23, 24 | syl6 33 | . 2 ⊢ (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ∅ ∈ 𝑦) → (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦))) |
26 | 3, 6, 9, 12, 14, 25 | finds 4632 | 1 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ⊆ wss 3153 ∅c0 3446 suc csuc 4396 ωcom 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-suc 4402 df-iom 4623 |
This theorem is referenced by: nn0eln0 4652 nnsucsssuc 6545 nntri3or 6546 nnm00 6583 ssfilem 6931 diffitest 6943 fiintim 6985 enumct 7174 nnnninfeq 7187 elni2 7374 enq0tr 7494 bj-charfunr 15302 |
Copyright terms: Public domain | W3C validator |