![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0elnn | GIF version |
Description: A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.) |
Ref | Expression |
---|---|
0elnn | ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2184 | . . 3 ⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅)) | |
2 | eleq2 2241 | . . 3 ⊢ (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅)) | |
3 | 1, 2 | orbi12d 793 | . 2 ⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (∅ = ∅ ∨ ∅ ∈ ∅))) |
4 | eqeq1 2184 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) | |
5 | eleq2 2241 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑦)) | |
6 | 4, 5 | orbi12d 793 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (𝑦 = ∅ ∨ ∅ ∈ 𝑦))) |
7 | eqeq1 2184 | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝑥 = ∅ ↔ suc 𝑦 = ∅)) | |
8 | eleq2 2241 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ suc 𝑦)) | |
9 | 7, 8 | orbi12d 793 | . 2 ⊢ (𝑥 = suc 𝑦 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦))) |
10 | eqeq1 2184 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) | |
11 | eleq2 2241 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝐴)) | |
12 | 10, 11 | orbi12d 793 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴))) |
13 | eqid 2177 | . . 3 ⊢ ∅ = ∅ | |
14 | 13 | orci 731 | . 2 ⊢ (∅ = ∅ ∨ ∅ ∈ ∅) |
15 | 0ex 4132 | . . . . . . 7 ⊢ ∅ ∈ V | |
16 | 15 | sucid 4419 | . . . . . 6 ⊢ ∅ ∈ suc ∅ |
17 | suceq 4404 | . . . . . 6 ⊢ (𝑦 = ∅ → suc 𝑦 = suc ∅) | |
18 | 16, 17 | eleqtrrid 2267 | . . . . 5 ⊢ (𝑦 = ∅ → ∅ ∈ suc 𝑦) |
19 | 18 | a1i 9 | . . . 4 ⊢ (𝑦 ∈ ω → (𝑦 = ∅ → ∅ ∈ suc 𝑦)) |
20 | sssucid 4417 | . . . . . 6 ⊢ 𝑦 ⊆ suc 𝑦 | |
21 | 20 | a1i 9 | . . . . 5 ⊢ (𝑦 ∈ ω → 𝑦 ⊆ suc 𝑦) |
22 | 21 | sseld 3156 | . . . 4 ⊢ (𝑦 ∈ ω → (∅ ∈ 𝑦 → ∅ ∈ suc 𝑦)) |
23 | 19, 22 | jaod 717 | . . 3 ⊢ (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ∅ ∈ 𝑦) → ∅ ∈ suc 𝑦)) |
24 | olc 711 | . . 3 ⊢ (∅ ∈ suc 𝑦 → (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦)) | |
25 | 23, 24 | syl6 33 | . 2 ⊢ (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ∅ ∈ 𝑦) → (suc 𝑦 = ∅ ∨ ∅ ∈ suc 𝑦))) |
26 | 3, 6, 9, 12, 14, 25 | finds 4601 | 1 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 708 = wceq 1353 ∈ wcel 2148 ⊆ wss 3131 ∅c0 3424 suc csuc 4367 ωcom 4591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-suc 4373 df-iom 4592 |
This theorem is referenced by: nn0eln0 4621 nnsucsssuc 6495 nntri3or 6496 nnm00 6533 ssfilem 6877 diffitest 6889 fiintim 6930 enumct 7116 nnnninfeq 7128 elni2 7315 enq0tr 7435 bj-charfunr 14647 |
Copyright terms: Public domain | W3C validator |