ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oasuc GIF version

Theorem oasuc 6573
Description: Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oasuc ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵))

Proof of Theorem oasuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 onsuc 4567 . . . . . 6 (𝐵 ∈ On → suc 𝐵 ∈ On)
2 oav2 6572 . . . . . 6 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥)))
31, 2sylan2 286 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥)))
4 df-suc 4436 . . . . . . . . . 10 suc 𝐵 = (𝐵 ∪ {𝐵})
5 iuneq1 3954 . . . . . . . . . 10 (suc 𝐵 = (𝐵 ∪ {𝐵}) → 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥) = 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +o 𝑥))
64, 5ax-mp 5 . . . . . . . . 9 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥) = 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +o 𝑥)
7 iunxun 4021 . . . . . . . . 9 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +o 𝑥) = ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +o 𝑥))
86, 7eqtri 2228 . . . . . . . 8 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥) = ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +o 𝑥))
9 oveq2 5975 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵))
10 suceq 4467 . . . . . . . . . . 11 ((𝐴 +o 𝑥) = (𝐴 +o 𝐵) → suc (𝐴 +o 𝑥) = suc (𝐴 +o 𝐵))
119, 10syl 14 . . . . . . . . . 10 (𝑥 = 𝐵 → suc (𝐴 +o 𝑥) = suc (𝐴 +o 𝐵))
1211iunxsng 4017 . . . . . . . . 9 (𝐵 ∈ On → 𝑥 ∈ {𝐵}suc (𝐴 +o 𝑥) = suc (𝐴 +o 𝐵))
1312uneq2d 3335 . . . . . . . 8 (𝐵 ∈ On → ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +o 𝑥)) = ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵)))
148, 13eqtrid 2252 . . . . . . 7 (𝐵 ∈ On → 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥) = ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵)))
1514uneq2d 3335 . . . . . 6 (𝐵 ∈ On → (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵))))
1615adantl 277 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵))))
173, 16eqtrd 2240 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵))))
18 unass 3338 . . . 4 ((𝐴 𝑥𝐵 suc (𝐴 +o 𝑥)) ∪ suc (𝐴 +o 𝐵)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵)))
1917, 18eqtr4di 2258 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = ((𝐴 𝑥𝐵 suc (𝐴 +o 𝑥)) ∪ suc (𝐴 +o 𝐵)))
20 oav2 6572 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 𝑥𝐵 suc (𝐴 +o 𝑥)))
2120uneq1d 3334 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∪ suc (𝐴 +o 𝐵)) = ((𝐴 𝑥𝐵 suc (𝐴 +o 𝑥)) ∪ suc (𝐴 +o 𝐵)))
2219, 21eqtr4d 2243 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = ((𝐴 +o 𝐵) ∪ suc (𝐴 +o 𝐵)))
23 sssucid 4480 . . 3 (𝐴 +o 𝐵) ⊆ suc (𝐴 +o 𝐵)
24 ssequn1 3351 . . 3 ((𝐴 +o 𝐵) ⊆ suc (𝐴 +o 𝐵) ↔ ((𝐴 +o 𝐵) ∪ suc (𝐴 +o 𝐵)) = suc (𝐴 +o 𝐵))
2523, 24mpbi 145 . 2 ((𝐴 +o 𝐵) ∪ suc (𝐴 +o 𝐵)) = suc (𝐴 +o 𝐵)
2622, 25eqtrdi 2256 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  cun 3172  wss 3174  {csn 3643   ciun 3941  Oncon0 4428  suc csuc 4430  (class class class)co 5967   +o coa 6522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-oadd 6529
This theorem is referenced by:  onasuc  6575  nnaordi  6617
  Copyright terms: Public domain W3C validator