ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oasuc GIF version

Theorem oasuc 6360
Description: Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oasuc ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵))

Proof of Theorem oasuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 suceloni 4417 . . . . . 6 (𝐵 ∈ On → suc 𝐵 ∈ On)
2 oav2 6359 . . . . . 6 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥)))
31, 2sylan2 284 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥)))
4 df-suc 4293 . . . . . . . . . 10 suc 𝐵 = (𝐵 ∪ {𝐵})
5 iuneq1 3826 . . . . . . . . . 10 (suc 𝐵 = (𝐵 ∪ {𝐵}) → 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥) = 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +o 𝑥))
64, 5ax-mp 5 . . . . . . . . 9 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥) = 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +o 𝑥)
7 iunxun 3892 . . . . . . . . 9 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +o 𝑥) = ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +o 𝑥))
86, 7eqtri 2160 . . . . . . . 8 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥) = ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +o 𝑥))
9 oveq2 5782 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵))
10 suceq 4324 . . . . . . . . . . 11 ((𝐴 +o 𝑥) = (𝐴 +o 𝐵) → suc (𝐴 +o 𝑥) = suc (𝐴 +o 𝐵))
119, 10syl 14 . . . . . . . . . 10 (𝑥 = 𝐵 → suc (𝐴 +o 𝑥) = suc (𝐴 +o 𝐵))
1211iunxsng 3888 . . . . . . . . 9 (𝐵 ∈ On → 𝑥 ∈ {𝐵}suc (𝐴 +o 𝑥) = suc (𝐴 +o 𝐵))
1312uneq2d 3230 . . . . . . . 8 (𝐵 ∈ On → ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +o 𝑥)) = ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵)))
148, 13syl5eq 2184 . . . . . . 7 (𝐵 ∈ On → 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥) = ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵)))
1514uneq2d 3230 . . . . . 6 (𝐵 ∈ On → (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵))))
1615adantl 275 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵))))
173, 16eqtrd 2172 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵))))
18 unass 3233 . . . 4 ((𝐴 𝑥𝐵 suc (𝐴 +o 𝑥)) ∪ suc (𝐴 +o 𝐵)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵)))
1917, 18syl6eqr 2190 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = ((𝐴 𝑥𝐵 suc (𝐴 +o 𝑥)) ∪ suc (𝐴 +o 𝐵)))
20 oav2 6359 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 𝑥𝐵 suc (𝐴 +o 𝑥)))
2120uneq1d 3229 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∪ suc (𝐴 +o 𝐵)) = ((𝐴 𝑥𝐵 suc (𝐴 +o 𝑥)) ∪ suc (𝐴 +o 𝐵)))
2219, 21eqtr4d 2175 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = ((𝐴 +o 𝐵) ∪ suc (𝐴 +o 𝐵)))
23 sssucid 4337 . . 3 (𝐴 +o 𝐵) ⊆ suc (𝐴 +o 𝐵)
24 ssequn1 3246 . . 3 ((𝐴 +o 𝐵) ⊆ suc (𝐴 +o 𝐵) ↔ ((𝐴 +o 𝐵) ∪ suc (𝐴 +o 𝐵)) = suc (𝐴 +o 𝐵))
2523, 24mpbi 144 . 2 ((𝐴 +o 𝐵) ∪ suc (𝐴 +o 𝐵)) = suc (𝐴 +o 𝐵)
2622, 25syl6eq 2188 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  cun 3069  wss 3071  {csn 3527   ciun 3813  Oncon0 4285  suc csuc 4287  (class class class)co 5774   +o coa 6310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317
This theorem is referenced by:  onasuc  6362  nnaordi  6404
  Copyright terms: Public domain W3C validator