ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oasuc GIF version

Theorem oasuc 6172
Description: Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oasuc ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = suc (𝐴 +𝑜 𝐵))

Proof of Theorem oasuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 suceloni 4289 . . . . . 6 (𝐵 ∈ On → suc 𝐵 ∈ On)
2 oav2 6171 . . . . . 6 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥)))
31, 2sylan2 280 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥)))
4 df-suc 4170 . . . . . . . . . 10 suc 𝐵 = (𝐵 ∪ {𝐵})
5 iuneq1 3725 . . . . . . . . . 10 (suc 𝐵 = (𝐵 ∪ {𝐵}) → 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥) = 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +𝑜 𝑥))
64, 5ax-mp 7 . . . . . . . . 9 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥) = 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +𝑜 𝑥)
7 iunxun 3790 . . . . . . . . 9 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +𝑜 𝑥) = ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +𝑜 𝑥))
86, 7eqtri 2105 . . . . . . . 8 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥) = ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +𝑜 𝑥))
9 oveq2 5614 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝐵))
10 suceq 4201 . . . . . . . . . . 11 ((𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝐵) → suc (𝐴 +𝑜 𝑥) = suc (𝐴 +𝑜 𝐵))
119, 10syl 14 . . . . . . . . . 10 (𝑥 = 𝐵 → suc (𝐴 +𝑜 𝑥) = suc (𝐴 +𝑜 𝐵))
1211iunxsng 3787 . . . . . . . . 9 (𝐵 ∈ On → 𝑥 ∈ {𝐵}suc (𝐴 +𝑜 𝑥) = suc (𝐴 +𝑜 𝐵))
1312uneq2d 3143 . . . . . . . 8 (𝐵 ∈ On → ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +𝑜 𝑥)) = ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵)))
148, 13syl5eq 2129 . . . . . . 7 (𝐵 ∈ On → 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥) = ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵)))
1514uneq2d 3143 . . . . . 6 (𝐵 ∈ On → (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵))))
1615adantl 271 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵))))
173, 16eqtrd 2117 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵))))
18 unass 3146 . . . 4 ((𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)) ∪ suc (𝐴 +𝑜 𝐵)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵)))
1917, 18syl6eqr 2135 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = ((𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)) ∪ suc (𝐴 +𝑜 𝐵)))
20 oav2 6171 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)))
2120uneq1d 3142 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +𝑜 𝐵) ∪ suc (𝐴 +𝑜 𝐵)) = ((𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)) ∪ suc (𝐴 +𝑜 𝐵)))
2219, 21eqtr4d 2120 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = ((𝐴 +𝑜 𝐵) ∪ suc (𝐴 +𝑜 𝐵)))
23 sssucid 4214 . . 3 (𝐴 +𝑜 𝐵) ⊆ suc (𝐴 +𝑜 𝐵)
24 ssequn1 3159 . . 3 ((𝐴 +𝑜 𝐵) ⊆ suc (𝐴 +𝑜 𝐵) ↔ ((𝐴 +𝑜 𝐵) ∪ suc (𝐴 +𝑜 𝐵)) = suc (𝐴 +𝑜 𝐵))
2523, 24mpbi 143 . 2 ((𝐴 +𝑜 𝐵) ∪ suc (𝐴 +𝑜 𝐵)) = suc (𝐴 +𝑜 𝐵)
2622, 25syl6eq 2133 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = suc (𝐴 +𝑜 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1287  wcel 1436  cun 2986  wss 2988  {csn 3430   ciun 3712  Oncon0 4162  suc csuc 4164  (class class class)co 5606   +𝑜 coa 6125
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3927  ax-sep 3930  ax-pow 3982  ax-pr 4008  ax-un 4232  ax-setind 4324
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3416  df-sn 3436  df-pr 3437  df-op 3439  df-uni 3636  df-iun 3714  df-br 3820  df-opab 3874  df-mpt 3875  df-tr 3910  df-id 4092  df-iord 4165  df-on 4167  df-suc 4170  df-xp 4415  df-rel 4416  df-cnv 4417  df-co 4418  df-dm 4419  df-rn 4420  df-res 4421  df-ima 4422  df-iota 4942  df-fun 4979  df-fn 4980  df-f 4981  df-f1 4982  df-fo 4983  df-f1o 4984  df-fv 4985  df-ov 5609  df-oprab 5610  df-mpt2 5611  df-1st 5861  df-2nd 5862  df-recs 6017  df-irdg 6082  df-oadd 6132
This theorem is referenced by:  onasuc  6174  nnaordi  6212
  Copyright terms: Public domain W3C validator