ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oasuc GIF version

Theorem oasuc 6443
Description: Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oasuc ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵))

Proof of Theorem oasuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 suceloni 4485 . . . . . 6 (𝐵 ∈ On → suc 𝐵 ∈ On)
2 oav2 6442 . . . . . 6 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥)))
31, 2sylan2 284 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥)))
4 df-suc 4356 . . . . . . . . . 10 suc 𝐵 = (𝐵 ∪ {𝐵})
5 iuneq1 3886 . . . . . . . . . 10 (suc 𝐵 = (𝐵 ∪ {𝐵}) → 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥) = 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +o 𝑥))
64, 5ax-mp 5 . . . . . . . . 9 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥) = 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +o 𝑥)
7 iunxun 3952 . . . . . . . . 9 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +o 𝑥) = ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +o 𝑥))
86, 7eqtri 2191 . . . . . . . 8 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥) = ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +o 𝑥))
9 oveq2 5861 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵))
10 suceq 4387 . . . . . . . . . . 11 ((𝐴 +o 𝑥) = (𝐴 +o 𝐵) → suc (𝐴 +o 𝑥) = suc (𝐴 +o 𝐵))
119, 10syl 14 . . . . . . . . . 10 (𝑥 = 𝐵 → suc (𝐴 +o 𝑥) = suc (𝐴 +o 𝐵))
1211iunxsng 3948 . . . . . . . . 9 (𝐵 ∈ On → 𝑥 ∈ {𝐵}suc (𝐴 +o 𝑥) = suc (𝐴 +o 𝐵))
1312uneq2d 3281 . . . . . . . 8 (𝐵 ∈ On → ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +o 𝑥)) = ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵)))
148, 13eqtrid 2215 . . . . . . 7 (𝐵 ∈ On → 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥) = ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵)))
1514uneq2d 3281 . . . . . 6 (𝐵 ∈ On → (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵))))
1615adantl 275 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +o 𝑥)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵))))
173, 16eqtrd 2203 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵))))
18 unass 3284 . . . 4 ((𝐴 𝑥𝐵 suc (𝐴 +o 𝑥)) ∪ suc (𝐴 +o 𝐵)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +o 𝑥) ∪ suc (𝐴 +o 𝐵)))
1917, 18eqtr4di 2221 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = ((𝐴 𝑥𝐵 suc (𝐴 +o 𝑥)) ∪ suc (𝐴 +o 𝐵)))
20 oav2 6442 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 𝑥𝐵 suc (𝐴 +o 𝑥)))
2120uneq1d 3280 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∪ suc (𝐴 +o 𝐵)) = ((𝐴 𝑥𝐵 suc (𝐴 +o 𝑥)) ∪ suc (𝐴 +o 𝐵)))
2219, 21eqtr4d 2206 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = ((𝐴 +o 𝐵) ∪ suc (𝐴 +o 𝐵)))
23 sssucid 4400 . . 3 (𝐴 +o 𝐵) ⊆ suc (𝐴 +o 𝐵)
24 ssequn1 3297 . . 3 ((𝐴 +o 𝐵) ⊆ suc (𝐴 +o 𝐵) ↔ ((𝐴 +o 𝐵) ∪ suc (𝐴 +o 𝐵)) = suc (𝐴 +o 𝐵))
2523, 24mpbi 144 . 2 ((𝐴 +o 𝐵) ∪ suc (𝐴 +o 𝐵)) = suc (𝐴 +o 𝐵)
2622, 25eqtrdi 2219 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  cun 3119  wss 3121  {csn 3583   ciun 3873  Oncon0 4348  suc csuc 4350  (class class class)co 5853   +o coa 6392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399
This theorem is referenced by:  onasuc  6445  nnaordi  6487
  Copyright terms: Public domain W3C validator