Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2timesd | GIF version |
Description: Two times a number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
2timesd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
2timesd | ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2timesd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | 2times 8944 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∈ wcel 2128 (class class class)co 5818 ℂcc 7713 + caddc 7718 · cmul 7720 2c2 8867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-resscn 7807 ax-1cn 7808 ax-icn 7810 ax-addcl 7811 ax-mulcl 7813 ax-mulcom 7816 ax-mulass 7818 ax-distr 7819 ax-1rid 7822 ax-cnre 7826 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-iota 5132 df-fv 5175 df-ov 5821 df-2 8875 |
This theorem is referenced by: xleaddadd 9773 fzctr 10014 flhalf 10183 q2submod 10266 modaddmodup 10268 m1expeven 10448 binom2 10511 nn0opthlem2d 10577 crre 10739 imval2 10776 resqrexlemdec 10893 amgm2 11000 maxabsle 11086 maxabslemab 11088 maxltsup 11100 max0addsup 11101 arisum2 11378 efival 11611 sinadd 11615 cosadd 11616 addsin 11621 subsin 11622 cosmul 11624 addcos 11625 subcos 11626 sin2t 11628 cos2t 11629 eirraplem 11655 bl2in 12763 cosordlem 13130 apdifflemf 13580 apdifflemr 13581 |
Copyright terms: Public domain | W3C validator |