| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2timesd | GIF version | ||
| Description: Two times a number. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| 2timesd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| 2timesd | ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2timesd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | 2times 9234 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6000 ℂcc 7993 + caddc 7998 · cmul 8000 2c2 9157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-mulcl 8093 ax-mulcom 8096 ax-mulass 8098 ax-distr 8099 ax-1rid 8102 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-2 9165 |
| This theorem is referenced by: xleaddadd 10079 fzctr 10325 flhalf 10517 q2submod 10602 modaddmodup 10604 m1expeven 10803 binom2 10868 nn0opthlem2d 10938 crre 11363 imval2 11400 resqrexlemdec 11517 amgm2 11624 maxabsle 11710 maxabslemab 11712 maxltsup 11724 max0addsup 11725 arisum2 12005 efival 12238 sinadd 12242 cosadd 12243 addsin 12248 subsin 12249 cosmul 12251 addcos 12252 subcos 12253 sin2t 12255 cos2t 12256 eirraplem 12283 pythagtriplem12 12793 pythagtriplem15 12796 pythagtriplem17 12798 difsqpwdvds 12856 4sqlem11 12919 4sqlem12 12920 bl2in 15071 cosordlem 15517 gausslemma2d 15742 lgsquadlem1 15750 apdifflemf 16373 apdifflemr 16374 |
| Copyright terms: Public domain | W3C validator |