| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2timesd | GIF version | ||
| Description: Two times a number. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| 2timesd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| 2timesd | ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2timesd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | 2times 9163 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 (class class class)co 5943 ℂcc 7922 + caddc 7927 · cmul 7929 2c2 9086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 8016 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-mulcl 8022 ax-mulcom 8025 ax-mulass 8027 ax-distr 8028 ax-1rid 8031 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-2 9094 |
| This theorem is referenced by: xleaddadd 10008 fzctr 10254 flhalf 10443 q2submod 10528 modaddmodup 10530 m1expeven 10729 binom2 10794 nn0opthlem2d 10864 crre 11110 imval2 11147 resqrexlemdec 11264 amgm2 11371 maxabsle 11457 maxabslemab 11459 maxltsup 11471 max0addsup 11472 arisum2 11752 efival 11985 sinadd 11989 cosadd 11990 addsin 11995 subsin 11996 cosmul 11998 addcos 11999 subcos 12000 sin2t 12002 cos2t 12003 eirraplem 12030 pythagtriplem12 12540 pythagtriplem15 12543 pythagtriplem17 12545 difsqpwdvds 12603 4sqlem11 12666 4sqlem12 12667 bl2in 14817 cosordlem 15263 gausslemma2d 15488 lgsquadlem1 15496 apdifflemf 15918 apdifflemr 15919 |
| Copyright terms: Public domain | W3C validator |