![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2timesd | GIF version |
Description: Two times a number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
2timesd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
2timesd | ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2timesd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | 2times 9110 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 + caddc 7875 · cmul 7877 2c2 9033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7964 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-mulcl 7970 ax-mulcom 7973 ax-mulass 7975 ax-distr 7976 ax-1rid 7979 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-2 9041 |
This theorem is referenced by: xleaddadd 9953 fzctr 10199 flhalf 10371 q2submod 10456 modaddmodup 10458 m1expeven 10657 binom2 10722 nn0opthlem2d 10792 crre 11001 imval2 11038 resqrexlemdec 11155 amgm2 11262 maxabsle 11348 maxabslemab 11350 maxltsup 11362 max0addsup 11363 arisum2 11642 efival 11875 sinadd 11879 cosadd 11880 addsin 11885 subsin 11886 cosmul 11888 addcos 11889 subcos 11890 sin2t 11892 cos2t 11893 eirraplem 11920 pythagtriplem12 12413 pythagtriplem15 12416 pythagtriplem17 12418 difsqpwdvds 12476 4sqlem11 12539 4sqlem12 12540 bl2in 14571 cosordlem 14984 gausslemma2d 15185 lgsquadlem1 15191 apdifflemf 15536 apdifflemr 15537 |
Copyright terms: Public domain | W3C validator |