| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2timesd | GIF version | ||
| Description: Two times a number. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| 2timesd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| 2timesd | ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2timesd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | 2times 9184 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 (class class class)co 5957 ℂcc 7943 + caddc 7948 · cmul 7950 2c2 9107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8037 ax-1cn 8038 ax-icn 8040 ax-addcl 8041 ax-mulcl 8043 ax-mulcom 8046 ax-mulass 8048 ax-distr 8049 ax-1rid 8052 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-2 9115 |
| This theorem is referenced by: xleaddadd 10029 fzctr 10275 flhalf 10467 q2submod 10552 modaddmodup 10554 m1expeven 10753 binom2 10818 nn0opthlem2d 10888 crre 11243 imval2 11280 resqrexlemdec 11397 amgm2 11504 maxabsle 11590 maxabslemab 11592 maxltsup 11604 max0addsup 11605 arisum2 11885 efival 12118 sinadd 12122 cosadd 12123 addsin 12128 subsin 12129 cosmul 12131 addcos 12132 subcos 12133 sin2t 12135 cos2t 12136 eirraplem 12163 pythagtriplem12 12673 pythagtriplem15 12676 pythagtriplem17 12678 difsqpwdvds 12736 4sqlem11 12799 4sqlem12 12800 bl2in 14950 cosordlem 15396 gausslemma2d 15621 lgsquadlem1 15629 apdifflemf 16126 apdifflemr 16127 |
| Copyright terms: Public domain | W3C validator |