| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2timesd | GIF version | ||
| Description: Two times a number. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| 2timesd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| 2timesd | ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2timesd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | 2times 9163 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 (class class class)co 5943 ℂcc 7922 + caddc 7927 · cmul 7929 2c2 9086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 8016 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-mulcl 8022 ax-mulcom 8025 ax-mulass 8027 ax-distr 8028 ax-1rid 8031 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-2 9094 |
| This theorem is referenced by: xleaddadd 10008 fzctr 10254 flhalf 10443 q2submod 10528 modaddmodup 10530 m1expeven 10729 binom2 10794 nn0opthlem2d 10864 crre 11139 imval2 11176 resqrexlemdec 11293 amgm2 11400 maxabsle 11486 maxabslemab 11488 maxltsup 11500 max0addsup 11501 arisum2 11781 efival 12014 sinadd 12018 cosadd 12019 addsin 12024 subsin 12025 cosmul 12027 addcos 12028 subcos 12029 sin2t 12031 cos2t 12032 eirraplem 12059 pythagtriplem12 12569 pythagtriplem15 12572 pythagtriplem17 12574 difsqpwdvds 12632 4sqlem11 12695 4sqlem12 12696 bl2in 14846 cosordlem 15292 gausslemma2d 15517 lgsquadlem1 15525 apdifflemf 15947 apdifflemr 15948 |
| Copyright terms: Public domain | W3C validator |