Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2timesd | GIF version |
Description: Two times a number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
2timesd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
2timesd | ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2timesd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | 2times 8981 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 (class class class)co 5841 ℂcc 7747 + caddc 7752 · cmul 7754 2c2 8904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7841 ax-1cn 7842 ax-icn 7844 ax-addcl 7845 ax-mulcl 7847 ax-mulcom 7850 ax-mulass 7852 ax-distr 7853 ax-1rid 7856 ax-cnre 7860 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-2 8912 |
This theorem is referenced by: xleaddadd 9819 fzctr 10064 flhalf 10233 q2submod 10316 modaddmodup 10318 m1expeven 10498 binom2 10562 nn0opthlem2d 10630 crre 10795 imval2 10832 resqrexlemdec 10949 amgm2 11056 maxabsle 11142 maxabslemab 11144 maxltsup 11156 max0addsup 11157 arisum2 11436 efival 11669 sinadd 11673 cosadd 11674 addsin 11679 subsin 11680 cosmul 11682 addcos 11683 subcos 11684 sin2t 11686 cos2t 11687 eirraplem 11713 pythagtriplem12 12203 pythagtriplem15 12206 pythagtriplem17 12208 difsqpwdvds 12265 bl2in 13003 cosordlem 13370 apdifflemf 13885 apdifflemr 13886 |
Copyright terms: Public domain | W3C validator |