| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2timesd | GIF version | ||
| Description: Two times a number. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| 2timesd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| 2timesd | ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2timesd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | 2times 9137 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 + caddc 7901 · cmul 7903 2c2 9060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7990 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-mulcom 7999 ax-mulass 8001 ax-distr 8002 ax-1rid 8005 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-2 9068 |
| This theorem is referenced by: xleaddadd 9981 fzctr 10227 flhalf 10411 q2submod 10496 modaddmodup 10498 m1expeven 10697 binom2 10762 nn0opthlem2d 10832 crre 11041 imval2 11078 resqrexlemdec 11195 amgm2 11302 maxabsle 11388 maxabslemab 11390 maxltsup 11402 max0addsup 11403 arisum2 11683 efival 11916 sinadd 11920 cosadd 11921 addsin 11926 subsin 11927 cosmul 11929 addcos 11930 subcos 11931 sin2t 11933 cos2t 11934 eirraplem 11961 pythagtriplem12 12471 pythagtriplem15 12474 pythagtriplem17 12476 difsqpwdvds 12534 4sqlem11 12597 4sqlem12 12598 bl2in 14747 cosordlem 15193 gausslemma2d 15418 lgsquadlem1 15426 apdifflemf 15803 apdifflemr 15804 |
| Copyright terms: Public domain | W3C validator |