| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2timesd | GIF version | ||
| Description: Two times a number. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| 2timesd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| 2timesd | ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2timesd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | 2times 9146 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 (class class class)co 5934 ℂcc 7905 + caddc 7910 · cmul 7912 2c2 9069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 7999 ax-1cn 8000 ax-icn 8002 ax-addcl 8003 ax-mulcl 8005 ax-mulcom 8008 ax-mulass 8010 ax-distr 8011 ax-1rid 8014 ax-cnre 8018 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5229 df-fv 5276 df-ov 5937 df-2 9077 |
| This theorem is referenced by: xleaddadd 9991 fzctr 10237 flhalf 10426 q2submod 10511 modaddmodup 10513 m1expeven 10712 binom2 10777 nn0opthlem2d 10847 crre 11087 imval2 11124 resqrexlemdec 11241 amgm2 11348 maxabsle 11434 maxabslemab 11436 maxltsup 11448 max0addsup 11449 arisum2 11729 efival 11962 sinadd 11966 cosadd 11967 addsin 11972 subsin 11973 cosmul 11975 addcos 11976 subcos 11977 sin2t 11979 cos2t 11980 eirraplem 12007 pythagtriplem12 12517 pythagtriplem15 12520 pythagtriplem17 12522 difsqpwdvds 12580 4sqlem11 12643 4sqlem12 12644 bl2in 14793 cosordlem 15239 gausslemma2d 15464 lgsquadlem1 15472 apdifflemf 15849 apdifflemr 15850 |
| Copyright terms: Public domain | W3C validator |