![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > times2 | GIF version |
Description: A number times 2. (Contributed by NM, 16-Oct-2007.) |
Ref | Expression |
---|---|
times2 | ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8649 | . . 3 ⊢ 2 ∈ ℂ | |
2 | mulcom 7621 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → (𝐴 · 2) = (2 · 𝐴)) | |
3 | 1, 2 | mpan2 419 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (2 · 𝐴)) |
4 | 2times 8700 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
5 | 3, 4 | eqtrd 2132 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 ∈ wcel 1448 (class class class)co 5706 ℂcc 7498 + caddc 7503 · cmul 7505 2c2 8629 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-mulcom 7596 ax-mulass 7598 ax-distr 7599 ax-1rid 7602 ax-cnre 7606 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-iota 5024 df-fv 5067 df-ov 5709 df-2 8637 |
This theorem is referenced by: times2i 8703 avglt1 8810 times2d 8815 |
Copyright terms: Public domain | W3C validator |