| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > times2 | GIF version | ||
| Description: A number times 2. (Contributed by NM, 16-Oct-2007.) |
| Ref | Expression |
|---|---|
| times2 | ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9089 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | mulcom 8036 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → (𝐴 · 2) = (2 · 𝐴)) | |
| 3 | 1, 2 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (2 · 𝐴)) |
| 4 | 2times 9146 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 5 | 3, 4 | eqtrd 2237 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 (class class class)co 5934 ℂcc 7905 + caddc 7910 · cmul 7912 2c2 9069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulcom 8008 ax-mulass 8010 ax-distr 8011 ax-1rid 8014 ax-cnre 8018 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5229 df-fv 5276 df-ov 5937 df-2 9077 |
| This theorem is referenced by: times2i 9149 avglt1 9258 times2d 9263 |
| Copyright terms: Public domain | W3C validator |