ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1st0 GIF version

Theorem 1st0 6197
Description: The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
Assertion
Ref Expression
1st0 (1st ‘∅) = ∅

Proof of Theorem 1st0
StepHypRef Expression
1 0ex 4156 . . 3 ∅ ∈ V
2 1stvalg 6195 . . 3 (∅ ∈ V → (1st ‘∅) = dom {∅})
31, 2ax-mp 5 . 2 (1st ‘∅) = dom {∅}
4 dmsn0 5133 . . 3 dom {∅} = ∅
54unieqi 3845 . 2 dom {∅} =
6 uni0 3862 . 2 ∅ = ∅
73, 5, 63eqtri 2218 1 (1st ‘∅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  Vcvv 2760  c0 3446  {csn 3618   cuni 3835  dom cdm 4659  cfv 5254  1st c1st 6191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fv 5262  df-1st 6193
This theorem is referenced by:  0npr  7543
  Copyright terms: Public domain W3C validator