ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1st0 GIF version

Theorem 1st0 6253
Description: The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
Assertion
Ref Expression
1st0 (1st ‘∅) = ∅

Proof of Theorem 1st0
StepHypRef Expression
1 0ex 4187 . . 3 ∅ ∈ V
2 1stvalg 6251 . . 3 (∅ ∈ V → (1st ‘∅) = dom {∅})
31, 2ax-mp 5 . 2 (1st ‘∅) = dom {∅}
4 dmsn0 5169 . . 3 dom {∅} = ∅
54unieqi 3874 . 2 dom {∅} =
6 uni0 3891 . 2 ∅ = ∅
73, 5, 63eqtri 2232 1 (1st ‘∅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2178  Vcvv 2776  c0 3468  {csn 3643   cuni 3864  dom cdm 4693  cfv 5290  1st c1st 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fv 5298  df-1st 6249
This theorem is referenced by:  0npr  7631
  Copyright terms: Public domain W3C validator