| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 1st0 | GIF version | ||
| Description: The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.) | 
| Ref | Expression | 
|---|---|
| 1st0 | ⊢ (1st ‘∅) = ∅ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0ex 4160 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1stvalg 6200 | . . 3 ⊢ (∅ ∈ V → (1st ‘∅) = ∪ dom {∅}) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (1st ‘∅) = ∪ dom {∅} | 
| 4 | dmsn0 5137 | . . 3 ⊢ dom {∅} = ∅ | |
| 5 | 4 | unieqi 3849 | . 2 ⊢ ∪ dom {∅} = ∪ ∅ | 
| 6 | uni0 3866 | . 2 ⊢ ∪ ∅ = ∅ | |
| 7 | 3, 5, 6 | 3eqtri 2221 | 1 ⊢ (1st ‘∅) = ∅ | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∅c0 3450 {csn 3622 ∪ cuni 3839 dom cdm 4663 ‘cfv 5258 1st c1st 6196 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fv 5266 df-1st 6198 | 
| This theorem is referenced by: 0npr 7550 | 
| Copyright terms: Public domain | W3C validator |