ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1st0 GIF version

Theorem 1st0 6202
Description: The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
Assertion
Ref Expression
1st0 (1st ‘∅) = ∅

Proof of Theorem 1st0
StepHypRef Expression
1 0ex 4160 . . 3 ∅ ∈ V
2 1stvalg 6200 . . 3 (∅ ∈ V → (1st ‘∅) = dom {∅})
31, 2ax-mp 5 . 2 (1st ‘∅) = dom {∅}
4 dmsn0 5137 . . 3 dom {∅} = ∅
54unieqi 3849 . 2 dom {∅} =
6 uni0 3866 . 2 ∅ = ∅
73, 5, 63eqtri 2221 1 (1st ‘∅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  Vcvv 2763  c0 3450  {csn 3622   cuni 3839  dom cdm 4663  cfv 5258  1st c1st 6196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fv 5266  df-1st 6198
This theorem is referenced by:  0npr  7550
  Copyright terms: Public domain W3C validator