ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1st0 GIF version

Theorem 1st0 6220
Description: The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
Assertion
Ref Expression
1st0 (1st ‘∅) = ∅

Proof of Theorem 1st0
StepHypRef Expression
1 0ex 4170 . . 3 ∅ ∈ V
2 1stvalg 6218 . . 3 (∅ ∈ V → (1st ‘∅) = dom {∅})
31, 2ax-mp 5 . 2 (1st ‘∅) = dom {∅}
4 dmsn0 5147 . . 3 dom {∅} = ∅
54unieqi 3859 . 2 dom {∅} =
6 uni0 3876 . 2 ∅ = ∅
73, 5, 63eqtri 2229 1 (1st ‘∅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wcel 2175  Vcvv 2771  c0 3459  {csn 3632   cuni 3849  dom cdm 4673  cfv 5268  1st c1st 6214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-iota 5229  df-fun 5270  df-fv 5276  df-1st 6216
This theorem is referenced by:  0npr  7578
  Copyright terms: Public domain W3C validator