ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2nd0 GIF version

Theorem 2nd0 6297
Description: The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
Assertion
Ref Expression
2nd0 (2nd ‘∅) = ∅

Proof of Theorem 2nd0
StepHypRef Expression
1 0ex 4211 . . 3 ∅ ∈ V
2 2ndvalg 6295 . . 3 (∅ ∈ V → (2nd ‘∅) = ran {∅})
31, 2ax-mp 5 . 2 (2nd ‘∅) = ran {∅}
4 dmsn0 5196 . . . 4 dom {∅} = ∅
5 dm0rn0 4940 . . . 4 (dom {∅} = ∅ ↔ ran {∅} = ∅)
64, 5mpbi 145 . . 3 ran {∅} = ∅
76unieqi 3898 . 2 ran {∅} =
8 uni0 3915 . 2 ∅ = ∅
93, 7, 83eqtri 2254 1 (2nd ‘∅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  Vcvv 2799  c0 3491  {csn 3666   cuni 3888  dom cdm 4719  ran crn 4720  cfv 5318  2nd c2nd 6291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fv 5326  df-2nd 6293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator