![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2nd0 | GIF version |
Description: The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
Ref | Expression |
---|---|
2nd0 | ⊢ (2nd ‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 3987 | . . 3 ⊢ ∅ ∈ V | |
2 | 2ndvalg 5952 | . . 3 ⊢ (∅ ∈ V → (2nd ‘∅) = ∪ ran {∅}) | |
3 | 1, 2 | ax-mp 7 | . 2 ⊢ (2nd ‘∅) = ∪ ran {∅} |
4 | dmsn0 4932 | . . . 4 ⊢ dom {∅} = ∅ | |
5 | dm0rn0 4684 | . . . 4 ⊢ (dom {∅} = ∅ ↔ ran {∅} = ∅) | |
6 | 4, 5 | mpbi 144 | . . 3 ⊢ ran {∅} = ∅ |
7 | 6 | unieqi 3685 | . 2 ⊢ ∪ ran {∅} = ∪ ∅ |
8 | uni0 3702 | . 2 ⊢ ∪ ∅ = ∅ | |
9 | 3, 7, 8 | 3eqtri 2119 | 1 ⊢ (2nd ‘∅) = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1296 ∈ wcel 1445 Vcvv 2633 ∅c0 3302 {csn 3466 ∪ cuni 3675 dom cdm 4467 ran crn 4468 ‘cfv 5049 2nd c2nd 5948 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-rex 2376 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-iota 5014 df-fun 5051 df-fv 5057 df-2nd 5950 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |