ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2nd0 GIF version

Theorem 2nd0 6200
Description: The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
Assertion
Ref Expression
2nd0 (2nd ‘∅) = ∅

Proof of Theorem 2nd0
StepHypRef Expression
1 0ex 4157 . . 3 ∅ ∈ V
2 2ndvalg 6198 . . 3 (∅ ∈ V → (2nd ‘∅) = ran {∅})
31, 2ax-mp 5 . 2 (2nd ‘∅) = ran {∅}
4 dmsn0 5134 . . . 4 dom {∅} = ∅
5 dm0rn0 4880 . . . 4 (dom {∅} = ∅ ↔ ran {∅} = ∅)
64, 5mpbi 145 . . 3 ran {∅} = ∅
76unieqi 3846 . 2 ran {∅} =
8 uni0 3863 . 2 ∅ = ∅
93, 7, 83eqtri 2218 1 (2nd ‘∅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  Vcvv 2760  c0 3447  {csn 3619   cuni 3836  dom cdm 4660  ran crn 4661  cfv 5255  2nd c2nd 6194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fv 5263  df-2nd 6196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator