ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2nd0 GIF version

Theorem 2nd0 6136
Description: The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
Assertion
Ref Expression
2nd0 (2nd ‘∅) = ∅

Proof of Theorem 2nd0
StepHypRef Expression
1 0ex 4125 . . 3 ∅ ∈ V
2 2ndvalg 6134 . . 3 (∅ ∈ V → (2nd ‘∅) = ran {∅})
31, 2ax-mp 5 . 2 (2nd ‘∅) = ran {∅}
4 dmsn0 5088 . . . 4 dom {∅} = ∅
5 dm0rn0 4837 . . . 4 (dom {∅} = ∅ ↔ ran {∅} = ∅)
64, 5mpbi 145 . . 3 ran {∅} = ∅
76unieqi 3815 . 2 ran {∅} =
8 uni0 3832 . 2 ∅ = ∅
93, 7, 83eqtri 2200 1 (2nd ‘∅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2146  Vcvv 2735  c0 3420  {csn 3589   cuni 3805  dom cdm 4620  ran crn 4621  cfv 5208  2nd c2nd 6130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-iota 5170  df-fun 5210  df-fv 5216  df-2nd 6132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator