| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > txbasex | GIF version | ||
| Description: The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| txval.1 | ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) |
| Ref | Expression |
|---|---|
| txbasex | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txval.1 | . . . 4 ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) | |
| 2 | eqid 2196 | . . . 4 ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 3 | eqid 2196 | . . . 4 ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 4 | 1, 2, 3 | txuni2 14576 | . . 3 ⊢ (∪ 𝑅 × ∪ 𝑆) = ∪ 𝐵 |
| 5 | uniexg 4475 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ∪ 𝑅 ∈ V) | |
| 6 | uniexg 4475 | . . . 4 ⊢ (𝑆 ∈ 𝑊 → ∪ 𝑆 ∈ V) | |
| 7 | xpexg 4778 | . . . 4 ⊢ ((∪ 𝑅 ∈ V ∧ ∪ 𝑆 ∈ V) → (∪ 𝑅 × ∪ 𝑆) ∈ V) | |
| 8 | 5, 6, 7 | syl2an 289 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (∪ 𝑅 × ∪ 𝑆) ∈ V) |
| 9 | 4, 8 | eqeltrrid 2284 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ∪ 𝐵 ∈ V) |
| 10 | uniexb 4509 | . 2 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
| 11 | 9, 10 | sylibr 134 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝐵 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cuni 3840 × cxp 4662 ran crn 4665 ∈ cmpo 5927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 |
| This theorem is referenced by: txbas 14578 eltx 14579 txtopon 14582 txopn 14585 txss12 14586 txbasval 14587 txrest 14596 |
| Copyright terms: Public domain | W3C validator |