ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txbasex GIF version

Theorem txbasex 14436
Description: The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypothesis
Ref Expression
txval.1 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
txbasex ((𝑅𝑉𝑆𝑊) → 𝐵 ∈ V)
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem txbasex
StepHypRef Expression
1 txval.1 . . . 4 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
2 eqid 2193 . . . 4 𝑅 = 𝑅
3 eqid 2193 . . . 4 𝑆 = 𝑆
41, 2, 3txuni2 14435 . . 3 ( 𝑅 × 𝑆) = 𝐵
5 uniexg 4471 . . . 4 (𝑅𝑉 𝑅 ∈ V)
6 uniexg 4471 . . . 4 (𝑆𝑊 𝑆 ∈ V)
7 xpexg 4774 . . . 4 (( 𝑅 ∈ V ∧ 𝑆 ∈ V) → ( 𝑅 × 𝑆) ∈ V)
85, 6, 7syl2an 289 . . 3 ((𝑅𝑉𝑆𝑊) → ( 𝑅 × 𝑆) ∈ V)
94, 8eqeltrrid 2281 . 2 ((𝑅𝑉𝑆𝑊) → 𝐵 ∈ V)
10 uniexb 4505 . 2 (𝐵 ∈ V ↔ 𝐵 ∈ V)
119, 10sylibr 134 1 ((𝑅𝑉𝑆𝑊) → 𝐵 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760   cuni 3836   × cxp 4658  ran crn 4661  cmpo 5921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196
This theorem is referenced by:  txbas  14437  eltx  14438  txtopon  14441  txopn  14444  txss12  14445  txbasval  14446  txrest  14455
  Copyright terms: Public domain W3C validator