ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txbasex GIF version

Theorem txbasex 14425
Description: The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypothesis
Ref Expression
txval.1 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
txbasex ((𝑅𝑉𝑆𝑊) → 𝐵 ∈ V)
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem txbasex
StepHypRef Expression
1 txval.1 . . . 4 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
2 eqid 2193 . . . 4 𝑅 = 𝑅
3 eqid 2193 . . . 4 𝑆 = 𝑆
41, 2, 3txuni2 14424 . . 3 ( 𝑅 × 𝑆) = 𝐵
5 uniexg 4470 . . . 4 (𝑅𝑉 𝑅 ∈ V)
6 uniexg 4470 . . . 4 (𝑆𝑊 𝑆 ∈ V)
7 xpexg 4773 . . . 4 (( 𝑅 ∈ V ∧ 𝑆 ∈ V) → ( 𝑅 × 𝑆) ∈ V)
85, 6, 7syl2an 289 . . 3 ((𝑅𝑉𝑆𝑊) → ( 𝑅 × 𝑆) ∈ V)
94, 8eqeltrrid 2281 . 2 ((𝑅𝑉𝑆𝑊) → 𝐵 ∈ V)
10 uniexb 4504 . 2 (𝐵 ∈ V ↔ 𝐵 ∈ V)
119, 10sylibr 134 1 ((𝑅𝑉𝑆𝑊) → 𝐵 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760   cuni 3835   × cxp 4657  ran crn 4660  cmpo 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194
This theorem is referenced by:  txbas  14426  eltx  14427  txtopon  14430  txopn  14433  txss12  14434  txbasval  14435  txrest  14444
  Copyright terms: Public domain W3C validator