ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txbasex GIF version

Theorem txbasex 12440
Description: The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypothesis
Ref Expression
txval.1 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
txbasex ((𝑅𝑉𝑆𝑊) → 𝐵 ∈ V)
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem txbasex
StepHypRef Expression
1 txval.1 . . . 4 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
2 eqid 2139 . . . 4 𝑅 = 𝑅
3 eqid 2139 . . . 4 𝑆 = 𝑆
41, 2, 3txuni2 12439 . . 3 ( 𝑅 × 𝑆) = 𝐵
5 uniexg 4361 . . . 4 (𝑅𝑉 𝑅 ∈ V)
6 uniexg 4361 . . . 4 (𝑆𝑊 𝑆 ∈ V)
7 xpexg 4653 . . . 4 (( 𝑅 ∈ V ∧ 𝑆 ∈ V) → ( 𝑅 × 𝑆) ∈ V)
85, 6, 7syl2an 287 . . 3 ((𝑅𝑉𝑆𝑊) → ( 𝑅 × 𝑆) ∈ V)
94, 8eqeltrrid 2227 . 2 ((𝑅𝑉𝑆𝑊) → 𝐵 ∈ V)
10 uniexb 4394 . 2 (𝐵 ∈ V ↔ 𝐵 ∈ V)
119, 10sylibr 133 1 ((𝑅𝑉𝑆𝑊) → 𝐵 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  Vcvv 2686   cuni 3736   × cxp 4537  ran crn 4540  cmpo 5776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039
This theorem is referenced by:  txbas  12441  eltx  12442  txtopon  12445  txopn  12448  txss12  12449  txbasval  12450  txrest  12459
  Copyright terms: Public domain W3C validator