| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > txbasex | GIF version | ||
| Description: The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| txval.1 | ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) |
| Ref | Expression |
|---|---|
| txbasex | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txval.1 | . . . 4 ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) | |
| 2 | eqid 2229 | . . . 4 ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 3 | eqid 2229 | . . . 4 ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 4 | 1, 2, 3 | txuni2 14930 | . . 3 ⊢ (∪ 𝑅 × ∪ 𝑆) = ∪ 𝐵 |
| 5 | uniexg 4530 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ∪ 𝑅 ∈ V) | |
| 6 | uniexg 4530 | . . . 4 ⊢ (𝑆 ∈ 𝑊 → ∪ 𝑆 ∈ V) | |
| 7 | xpexg 4833 | . . . 4 ⊢ ((∪ 𝑅 ∈ V ∧ ∪ 𝑆 ∈ V) → (∪ 𝑅 × ∪ 𝑆) ∈ V) | |
| 8 | 5, 6, 7 | syl2an 289 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (∪ 𝑅 × ∪ 𝑆) ∈ V) |
| 9 | 4, 8 | eqeltrrid 2317 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ∪ 𝐵 ∈ V) |
| 10 | uniexb 4564 | . 2 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
| 11 | 9, 10 | sylibr 134 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝐵 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∪ cuni 3888 × cxp 4717 ran crn 4720 ∈ cmpo 6003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 |
| This theorem is referenced by: txbas 14932 eltx 14933 txtopon 14936 txopn 14939 txss12 14940 txbasval 14941 txrest 14950 |
| Copyright terms: Public domain | W3C validator |