| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > tfrcllembex | GIF version | ||
| Description: Lemma for tfrcl 6422. The set 𝐵 exists. (Contributed by Jim Kingdon, 25-Mar-2022.) | 
| Ref | Expression | 
|---|---|
| tfrcl.f | ⊢ 𝐹 = recs(𝐺) | 
| tfrcl.g | ⊢ (𝜑 → Fun 𝐺) | 
| tfrcl.x | ⊢ (𝜑 → Ord 𝑋) | 
| tfrcl.ex | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) | 
| tfrcllemsucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | 
| tfrcllembacc.3 | ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} | 
| tfrcllembacc.u | ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) | 
| tfrcllembacc.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑋) | 
| tfrcllembacc.5 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) | 
| Ref | Expression | 
|---|---|
| tfrcllembex | ⊢ (𝜑 → 𝐵 ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tfrcl.f | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
| 2 | tfrcl.g | . . . 4 ⊢ (𝜑 → Fun 𝐺) | |
| 3 | tfrcl.x | . . . 4 ⊢ (𝜑 → Ord 𝑋) | |
| 4 | tfrcl.ex | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) | |
| 5 | tfrcllemsucfn.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 6 | tfrcllembacc.3 | . . . 4 ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} | |
| 7 | tfrcllembacc.u | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) | |
| 8 | tfrcllembacc.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑋) | |
| 9 | tfrcllembacc.5 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfrcllembfn 6415 | . . 3 ⊢ (𝜑 → ∪ 𝐵:𝐷⟶𝑆) | 
| 11 | fex 5791 | . . 3 ⊢ ((∪ 𝐵:𝐷⟶𝑆 ∧ 𝐷 ∈ 𝑋) → ∪ 𝐵 ∈ V) | |
| 12 | 10, 8, 11 | syl2anc 411 | . 2 ⊢ (𝜑 → ∪ 𝐵 ∈ V) | 
| 13 | uniexb 4508 | . 2 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
| 14 | 12, 13 | sylibr 134 | 1 ⊢ (𝜑 → 𝐵 ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∃wex 1506 ∈ wcel 2167 {cab 2182 ∀wral 2475 ∃wrex 2476 Vcvv 2763 ∪ cun 3155 {csn 3622 〈cop 3625 ∪ cuni 3839 Ord word 4397 suc csuc 4400 ↾ cres 4665 Fun wfun 5252 ⟶wf 5254 ‘cfv 5258 recscrecs 6362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-recs 6363 | 
| This theorem is referenced by: tfrcllemex 6418 | 
| Copyright terms: Public domain | W3C validator |