![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfrcllembex | GIF version |
Description: Lemma for tfrcl 6389. The set 𝐵 exists. (Contributed by Jim Kingdon, 25-Mar-2022.) |
Ref | Expression |
---|---|
tfrcl.f | ⊢ 𝐹 = recs(𝐺) |
tfrcl.g | ⊢ (𝜑 → Fun 𝐺) |
tfrcl.x | ⊢ (𝜑 → Ord 𝑋) |
tfrcl.ex | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
tfrcllemsucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
tfrcllembacc.3 | ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} |
tfrcllembacc.u | ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
tfrcllembacc.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑋) |
tfrcllembacc.5 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
Ref | Expression |
---|---|
tfrcllembex | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrcl.f | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
2 | tfrcl.g | . . . 4 ⊢ (𝜑 → Fun 𝐺) | |
3 | tfrcl.x | . . . 4 ⊢ (𝜑 → Ord 𝑋) | |
4 | tfrcl.ex | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) | |
5 | tfrcllemsucfn.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
6 | tfrcllembacc.3 | . . . 4 ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} | |
7 | tfrcllembacc.u | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) | |
8 | tfrcllembacc.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑋) | |
9 | tfrcllembacc.5 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfrcllembfn 6382 | . . 3 ⊢ (𝜑 → ∪ 𝐵:𝐷⟶𝑆) |
11 | fex 5766 | . . 3 ⊢ ((∪ 𝐵:𝐷⟶𝑆 ∧ 𝐷 ∈ 𝑋) → ∪ 𝐵 ∈ V) | |
12 | 10, 8, 11 | syl2anc 411 | . 2 ⊢ (𝜑 → ∪ 𝐵 ∈ V) |
13 | uniexb 4491 | . 2 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
14 | 12, 13 | sylibr 134 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2160 {cab 2175 ∀wral 2468 ∃wrex 2469 Vcvv 2752 ∪ cun 3142 {csn 3607 〈cop 3610 ∪ cuni 3824 Ord word 4380 suc csuc 4383 ↾ cres 4646 Fun wfun 5229 ⟶wf 5231 ‘cfv 5235 recscrecs 6329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-iord 4384 df-on 4386 df-suc 4389 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-recs 6330 |
This theorem is referenced by: tfrcllemex 6385 |
Copyright terms: Public domain | W3C validator |