ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpexgg GIF version

Theorem ixpexgg 6616
Description: The existence of an infinite Cartesian product. 𝑥 is normally a free-variable parameter in 𝐵. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Jim Kingdon, 15-Feb-2023.)
Assertion
Ref Expression
ixpexgg ((𝐴𝑊 ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ixpexgg
StepHypRef Expression
1 uniixp 6615 . . 3 X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵)
2 iunexg 6017 . . . 4 ((𝐴𝑊 ∧ ∀𝑥𝐴 𝐵𝑉) → 𝑥𝐴 𝐵 ∈ V)
3 xpexg 4653 . . . 4 ((𝐴𝑊 𝑥𝐴 𝐵 ∈ V) → (𝐴 × 𝑥𝐴 𝐵) ∈ V)
42, 3syldan 280 . . 3 ((𝐴𝑊 ∧ ∀𝑥𝐴 𝐵𝑉) → (𝐴 × 𝑥𝐴 𝐵) ∈ V)
5 ssexg 4067 . . 3 (( X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵) ∧ (𝐴 × 𝑥𝐴 𝐵) ∈ V) → X𝑥𝐴 𝐵 ∈ V)
61, 4, 5sylancr 410 . 2 ((𝐴𝑊 ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
7 uniexb 4394 . 2 (X𝑥𝐴 𝐵 ∈ V ↔ X𝑥𝐴 𝐵 ∈ V)
86, 7sylibr 133 1 ((𝐴𝑊 ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1480  wral 2416  Vcvv 2686  wss 3071   cuni 3736   ciun 3813   × cxp 4537  Xcixp 6592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ixp 6593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator