![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvsng | GIF version |
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) |
Ref | Expression |
---|---|
fvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3780 | . . . . 5 ⊢ (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩) | |
2 | 1 | sneqd 3607 | . . . 4 ⊢ (𝑎 = 𝐴 → {⟨𝑎, 𝑏⟩} = {⟨𝐴, 𝑏⟩}) |
3 | id 19 | . . . 4 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
4 | 2, 3 | fveq12d 5524 | . . 3 ⊢ (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}‘𝑎) = ({⟨𝐴, 𝑏⟩}‘𝐴)) |
5 | 4 | eqeq1d 2186 | . 2 ⊢ (𝑎 = 𝐴 → (({⟨𝑎, 𝑏⟩}‘𝑎) = 𝑏 ↔ ({⟨𝐴, 𝑏⟩}‘𝐴) = 𝑏)) |
6 | opeq2 3781 | . . . . 5 ⊢ (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩) | |
7 | 6 | sneqd 3607 | . . . 4 ⊢ (𝑏 = 𝐵 → {⟨𝐴, 𝑏⟩} = {⟨𝐴, 𝐵⟩}) |
8 | 7 | fveq1d 5519 | . . 3 ⊢ (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}‘𝐴) = ({⟨𝐴, 𝐵⟩}‘𝐴)) |
9 | id 19 | . . 3 ⊢ (𝑏 = 𝐵 → 𝑏 = 𝐵) | |
10 | 8, 9 | eqeq12d 2192 | . 2 ⊢ (𝑏 = 𝐵 → (({⟨𝐴, 𝑏⟩}‘𝐴) = 𝑏 ↔ ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵)) |
11 | vex 2742 | . . 3 ⊢ 𝑎 ∈ V | |
12 | vex 2742 | . . 3 ⊢ 𝑏 ∈ V | |
13 | 11, 12 | fvsn 5713 | . 2 ⊢ ({⟨𝑎, 𝑏⟩}‘𝑎) = 𝑏 |
14 | 5, 10, 13 | vtocl2g 2803 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 {csn 3594 ⟨cop 3597 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 |
This theorem is referenced by: fsnunfv 5719 fvpr1g 5724 fvpr2g 5725 tfr0dm 6325 fseq1p1m1 10096 1fv 10141 sumsnf 11419 prodsnf 11602 setsslid 12515 mgm1 12794 sgrp1 12821 mnd1 12852 mnd1id 12853 grp1 12981 ring1 13241 |
Copyright terms: Public domain | W3C validator |