| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fvsng | GIF version | ||
| Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) | 
| Ref | Expression | 
|---|---|
| fvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opeq1 3808 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, 𝑏〉 = 〈𝐴, 𝑏〉) | |
| 2 | 1 | sneqd 3635 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, 𝑏〉} = {〈𝐴, 𝑏〉}) | 
| 3 | id 19 | . . . 4 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
| 4 | 2, 3 | fveq12d 5565 | . . 3 ⊢ (𝑎 = 𝐴 → ({〈𝑎, 𝑏〉}‘𝑎) = ({〈𝐴, 𝑏〉}‘𝐴)) | 
| 5 | 4 | eqeq1d 2205 | . 2 ⊢ (𝑎 = 𝐴 → (({〈𝑎, 𝑏〉}‘𝑎) = 𝑏 ↔ ({〈𝐴, 𝑏〉}‘𝐴) = 𝑏)) | 
| 6 | opeq2 3809 | . . . . 5 ⊢ (𝑏 = 𝐵 → 〈𝐴, 𝑏〉 = 〈𝐴, 𝐵〉) | |
| 7 | 6 | sneqd 3635 | . . . 4 ⊢ (𝑏 = 𝐵 → {〈𝐴, 𝑏〉} = {〈𝐴, 𝐵〉}) | 
| 8 | 7 | fveq1d 5560 | . . 3 ⊢ (𝑏 = 𝐵 → ({〈𝐴, 𝑏〉}‘𝐴) = ({〈𝐴, 𝐵〉}‘𝐴)) | 
| 9 | id 19 | . . 3 ⊢ (𝑏 = 𝐵 → 𝑏 = 𝐵) | |
| 10 | 8, 9 | eqeq12d 2211 | . 2 ⊢ (𝑏 = 𝐵 → (({〈𝐴, 𝑏〉}‘𝐴) = 𝑏 ↔ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵)) | 
| 11 | vex 2766 | . . 3 ⊢ 𝑎 ∈ V | |
| 12 | vex 2766 | . . 3 ⊢ 𝑏 ∈ V | |
| 13 | 11, 12 | fvsn 5757 | . 2 ⊢ ({〈𝑎, 𝑏〉}‘𝑎) = 𝑏 | 
| 14 | 5, 10, 13 | vtocl2g 2828 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {csn 3622 〈cop 3625 ‘cfv 5258 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 | 
| This theorem is referenced by: fsnunfv 5763 fvpr1g 5768 fvpr2g 5769 tfr0dm 6380 fseq1p1m1 10169 1fv 10214 sumsnf 11574 prodsnf 11757 setsslid 12729 mgm1 13013 sgrp1 13054 mnd1 13087 mnd1id 13088 grp1 13238 ring1 13615 ixpsnbasval 14022 | 
| Copyright terms: Public domain | W3C validator |