ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsng GIF version

Theorem fvsng 5755
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.)
Assertion
Ref Expression
fvsng ((𝐴𝑉𝐵𝑊) → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵)

Proof of Theorem fvsng
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3805 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
21sneqd 3632 . . . 4 (𝑎 = 𝐴 → {⟨𝑎, 𝑏⟩} = {⟨𝐴, 𝑏⟩})
3 id 19 . . . 4 (𝑎 = 𝐴𝑎 = 𝐴)
42, 3fveq12d 5562 . . 3 (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}‘𝑎) = ({⟨𝐴, 𝑏⟩}‘𝐴))
54eqeq1d 2202 . 2 (𝑎 = 𝐴 → (({⟨𝑎, 𝑏⟩}‘𝑎) = 𝑏 ↔ ({⟨𝐴, 𝑏⟩}‘𝐴) = 𝑏))
6 opeq2 3806 . . . . 5 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
76sneqd 3632 . . . 4 (𝑏 = 𝐵 → {⟨𝐴, 𝑏⟩} = {⟨𝐴, 𝐵⟩})
87fveq1d 5557 . . 3 (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}‘𝐴) = ({⟨𝐴, 𝐵⟩}‘𝐴))
9 id 19 . . 3 (𝑏 = 𝐵𝑏 = 𝐵)
108, 9eqeq12d 2208 . 2 (𝑏 = 𝐵 → (({⟨𝐴, 𝑏⟩}‘𝐴) = 𝑏 ↔ ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵))
11 vex 2763 . . 3 𝑎 ∈ V
12 vex 2763 . . 3 𝑏 ∈ V
1311, 12fvsn 5754 . 2 ({⟨𝑎, 𝑏⟩}‘𝑎) = 𝑏
145, 10, 13vtocl2g 2825 1 ((𝐴𝑉𝐵𝑊) → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  {csn 3619  cop 3622  cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263
This theorem is referenced by:  fsnunfv  5760  fvpr1g  5765  fvpr2g  5766  tfr0dm  6377  fseq1p1m1  10163  1fv  10208  sumsnf  11555  prodsnf  11738  setsslid  12672  mgm1  12956  sgrp1  12997  mnd1  13030  mnd1id  13031  grp1  13181  ring1  13558  ixpsnbasval  13965
  Copyright terms: Public domain W3C validator