ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsng GIF version

Theorem fvsng 5758
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.)
Assertion
Ref Expression
fvsng ((𝐴𝑉𝐵𝑊) → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵)

Proof of Theorem fvsng
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3808 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
21sneqd 3635 . . . 4 (𝑎 = 𝐴 → {⟨𝑎, 𝑏⟩} = {⟨𝐴, 𝑏⟩})
3 id 19 . . . 4 (𝑎 = 𝐴𝑎 = 𝐴)
42, 3fveq12d 5565 . . 3 (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}‘𝑎) = ({⟨𝐴, 𝑏⟩}‘𝐴))
54eqeq1d 2205 . 2 (𝑎 = 𝐴 → (({⟨𝑎, 𝑏⟩}‘𝑎) = 𝑏 ↔ ({⟨𝐴, 𝑏⟩}‘𝐴) = 𝑏))
6 opeq2 3809 . . . . 5 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
76sneqd 3635 . . . 4 (𝑏 = 𝐵 → {⟨𝐴, 𝑏⟩} = {⟨𝐴, 𝐵⟩})
87fveq1d 5560 . . 3 (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}‘𝐴) = ({⟨𝐴, 𝐵⟩}‘𝐴))
9 id 19 . . 3 (𝑏 = 𝐵𝑏 = 𝐵)
108, 9eqeq12d 2211 . 2 (𝑏 = 𝐵 → (({⟨𝐴, 𝑏⟩}‘𝐴) = 𝑏 ↔ ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵))
11 vex 2766 . . 3 𝑎 ∈ V
12 vex 2766 . . 3 𝑏 ∈ V
1311, 12fvsn 5757 . 2 ({⟨𝑎, 𝑏⟩}‘𝑎) = 𝑏
145, 10, 13vtocl2g 2828 1 ((𝐴𝑉𝐵𝑊) → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {csn 3622  cop 3625  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266
This theorem is referenced by:  fsnunfv  5763  fvpr1g  5768  fvpr2g  5769  tfr0dm  6380  fseq1p1m1  10169  1fv  10214  sumsnf  11574  prodsnf  11757  setsslid  12729  mgm1  13013  sgrp1  13054  mnd1  13087  mnd1id  13088  grp1  13238  ring1  13615  ixpsnbasval  14022
  Copyright terms: Public domain W3C validator