![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvsng | GIF version |
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) |
Ref | Expression |
---|---|
fvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3628 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, 𝑏〉 = 〈𝐴, 𝑏〉) | |
2 | 1 | sneqd 3463 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, 𝑏〉} = {〈𝐴, 𝑏〉}) |
3 | id 19 | . . . 4 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
4 | 2, 3 | fveq12d 5325 | . . 3 ⊢ (𝑎 = 𝐴 → ({〈𝑎, 𝑏〉}‘𝑎) = ({〈𝐴, 𝑏〉}‘𝐴)) |
5 | 4 | eqeq1d 2097 | . 2 ⊢ (𝑎 = 𝐴 → (({〈𝑎, 𝑏〉}‘𝑎) = 𝑏 ↔ ({〈𝐴, 𝑏〉}‘𝐴) = 𝑏)) |
6 | opeq2 3629 | . . . . 5 ⊢ (𝑏 = 𝐵 → 〈𝐴, 𝑏〉 = 〈𝐴, 𝐵〉) | |
7 | 6 | sneqd 3463 | . . . 4 ⊢ (𝑏 = 𝐵 → {〈𝐴, 𝑏〉} = {〈𝐴, 𝐵〉}) |
8 | 7 | fveq1d 5320 | . . 3 ⊢ (𝑏 = 𝐵 → ({〈𝐴, 𝑏〉}‘𝐴) = ({〈𝐴, 𝐵〉}‘𝐴)) |
9 | id 19 | . . 3 ⊢ (𝑏 = 𝐵 → 𝑏 = 𝐵) | |
10 | 8, 9 | eqeq12d 2103 | . 2 ⊢ (𝑏 = 𝐵 → (({〈𝐴, 𝑏〉}‘𝐴) = 𝑏 ↔ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵)) |
11 | vex 2623 | . . 3 ⊢ 𝑎 ∈ V | |
12 | vex 2623 | . . 3 ⊢ 𝑏 ∈ V | |
13 | 11, 12 | fvsn 5506 | . 2 ⊢ ({〈𝑎, 𝑏〉}‘𝑎) = 𝑏 |
14 | 5, 10, 13 | vtocl2g 2684 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1290 ∈ wcel 1439 {csn 3450 〈cop 3453 ‘cfv 5028 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-sbc 2842 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-id 4129 df-xp 4457 df-rel 4458 df-cnv 4459 df-co 4460 df-dm 4461 df-iota 4993 df-fun 5030 df-fv 5036 |
This theorem is referenced by: fsnunfv 5512 fvpr1g 5517 fvpr2g 5518 tfr0dm 6101 fseq1p1m1 9562 1fv 9604 sumsnf 10857 setsslid 11598 |
Copyright terms: Public domain | W3C validator |