| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvsng | GIF version | ||
| Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) |
| Ref | Expression |
|---|---|
| fvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3856 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, 𝑏〉 = 〈𝐴, 𝑏〉) | |
| 2 | 1 | sneqd 3679 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, 𝑏〉} = {〈𝐴, 𝑏〉}) |
| 3 | id 19 | . . . 4 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
| 4 | 2, 3 | fveq12d 5630 | . . 3 ⊢ (𝑎 = 𝐴 → ({〈𝑎, 𝑏〉}‘𝑎) = ({〈𝐴, 𝑏〉}‘𝐴)) |
| 5 | 4 | eqeq1d 2238 | . 2 ⊢ (𝑎 = 𝐴 → (({〈𝑎, 𝑏〉}‘𝑎) = 𝑏 ↔ ({〈𝐴, 𝑏〉}‘𝐴) = 𝑏)) |
| 6 | opeq2 3857 | . . . . 5 ⊢ (𝑏 = 𝐵 → 〈𝐴, 𝑏〉 = 〈𝐴, 𝐵〉) | |
| 7 | 6 | sneqd 3679 | . . . 4 ⊢ (𝑏 = 𝐵 → {〈𝐴, 𝑏〉} = {〈𝐴, 𝐵〉}) |
| 8 | 7 | fveq1d 5625 | . . 3 ⊢ (𝑏 = 𝐵 → ({〈𝐴, 𝑏〉}‘𝐴) = ({〈𝐴, 𝐵〉}‘𝐴)) |
| 9 | id 19 | . . 3 ⊢ (𝑏 = 𝐵 → 𝑏 = 𝐵) | |
| 10 | 8, 9 | eqeq12d 2244 | . 2 ⊢ (𝑏 = 𝐵 → (({〈𝐴, 𝑏〉}‘𝐴) = 𝑏 ↔ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵)) |
| 11 | vex 2802 | . . 3 ⊢ 𝑎 ∈ V | |
| 12 | vex 2802 | . . 3 ⊢ 𝑏 ∈ V | |
| 13 | 11, 12 | fvsn 5827 | . 2 ⊢ ({〈𝑎, 𝑏〉}‘𝑎) = 𝑏 |
| 14 | 5, 10, 13 | vtocl2g 2865 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {csn 3666 〈cop 3669 ‘cfv 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 |
| This theorem is referenced by: fsnunfv 5833 fvpr1g 5838 fvpr2g 5839 tfr0dm 6458 fseq1p1m1 10278 1fv 10323 s1fv 11145 sumsnf 11906 prodsnf 12089 setsslid 13069 mgm1 13389 sgrp1 13430 mnd1 13474 mnd1id 13475 grp1 13625 ring1 14008 ixpsnbasval 14415 |
| Copyright terms: Public domain | W3C validator |