| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvsng | GIF version | ||
| Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) |
| Ref | Expression |
|---|---|
| fvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3822 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, 𝑏〉 = 〈𝐴, 𝑏〉) | |
| 2 | 1 | sneqd 3648 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, 𝑏〉} = {〈𝐴, 𝑏〉}) |
| 3 | id 19 | . . . 4 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
| 4 | 2, 3 | fveq12d 5593 | . . 3 ⊢ (𝑎 = 𝐴 → ({〈𝑎, 𝑏〉}‘𝑎) = ({〈𝐴, 𝑏〉}‘𝐴)) |
| 5 | 4 | eqeq1d 2215 | . 2 ⊢ (𝑎 = 𝐴 → (({〈𝑎, 𝑏〉}‘𝑎) = 𝑏 ↔ ({〈𝐴, 𝑏〉}‘𝐴) = 𝑏)) |
| 6 | opeq2 3823 | . . . . 5 ⊢ (𝑏 = 𝐵 → 〈𝐴, 𝑏〉 = 〈𝐴, 𝐵〉) | |
| 7 | 6 | sneqd 3648 | . . . 4 ⊢ (𝑏 = 𝐵 → {〈𝐴, 𝑏〉} = {〈𝐴, 𝐵〉}) |
| 8 | 7 | fveq1d 5588 | . . 3 ⊢ (𝑏 = 𝐵 → ({〈𝐴, 𝑏〉}‘𝐴) = ({〈𝐴, 𝐵〉}‘𝐴)) |
| 9 | id 19 | . . 3 ⊢ (𝑏 = 𝐵 → 𝑏 = 𝐵) | |
| 10 | 8, 9 | eqeq12d 2221 | . 2 ⊢ (𝑏 = 𝐵 → (({〈𝐴, 𝑏〉}‘𝐴) = 𝑏 ↔ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵)) |
| 11 | vex 2776 | . . 3 ⊢ 𝑎 ∈ V | |
| 12 | vex 2776 | . . 3 ⊢ 𝑏 ∈ V | |
| 13 | 11, 12 | fvsn 5789 | . 2 ⊢ ({〈𝑎, 𝑏〉}‘𝑎) = 𝑏 |
| 14 | 5, 10, 13 | vtocl2g 2839 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {csn 3635 〈cop 3638 ‘cfv 5277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 |
| This theorem is referenced by: fsnunfv 5795 fvpr1g 5800 fvpr2g 5801 tfr0dm 6418 fseq1p1m1 10229 1fv 10274 s1fv 11094 sumsnf 11770 prodsnf 11953 setsslid 12933 mgm1 13252 sgrp1 13293 mnd1 13337 mnd1id 13338 grp1 13488 ring1 13871 ixpsnbasval 14278 |
| Copyright terms: Public domain | W3C validator |