ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stg GIF version

Theorem op1stg 6153
Description: Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
Assertion
Ref Expression
op1stg ((𝐴𝑉𝐵𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)

Proof of Theorem op1stg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3780 . . . 4 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
21fveq2d 5521 . . 3 (𝑥 = 𝐴 → (1st ‘⟨𝑥, 𝑦⟩) = (1st ‘⟨𝐴, 𝑦⟩))
3 id 19 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
42, 3eqeq12d 2192 . 2 (𝑥 = 𝐴 → ((1st ‘⟨𝑥, 𝑦⟩) = 𝑥 ↔ (1st ‘⟨𝐴, 𝑦⟩) = 𝐴))
5 opeq2 3781 . . . 4 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
65fveq2d 5521 . . 3 (𝑦 = 𝐵 → (1st ‘⟨𝐴, 𝑦⟩) = (1st ‘⟨𝐴, 𝐵⟩))
76eqeq1d 2186 . 2 (𝑦 = 𝐵 → ((1st ‘⟨𝐴, 𝑦⟩) = 𝐴 ↔ (1st ‘⟨𝐴, 𝐵⟩) = 𝐴))
8 vex 2742 . . 3 𝑥 ∈ V
9 vex 2742 . . 3 𝑦 ∈ V
108, 9op1st 6149 . 2 (1st ‘⟨𝑥, 𝑦⟩) = 𝑥
114, 7, 10vtocl2g 2803 1 ((𝐴𝑉𝐵𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cop 3597  cfv 5218  1st c1st 6141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fv 5226  df-1st 6143
This theorem is referenced by:  ot1stg  6155  ot2ndg  6156  1stconst  6224  algrflemg  6233  mpoxopn0yelv  6242  mpoxopoveq  6243  xpmapenlem  6851  1stinl  7075  1stinr  7077  mulpipq  7373  suplocexprlemlub  7725  aprcl  8605  frecuzrdgg  10418  qredeu  12099  qnumdenbi  12194  upxp  13857  uptx  13859  txmetcnp  14103
  Copyright terms: Public domain W3C validator