![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > op1stg | GIF version |
Description: Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
Ref | Expression |
---|---|
op1stg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3652 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
2 | 1 | fveq2d 5357 | . . 3 ⊢ (𝑥 = 𝐴 → (1st ‘〈𝑥, 𝑦〉) = (1st ‘〈𝐴, 𝑦〉)) |
3 | id 19 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
4 | 2, 3 | eqeq12d 2114 | . 2 ⊢ (𝑥 = 𝐴 → ((1st ‘〈𝑥, 𝑦〉) = 𝑥 ↔ (1st ‘〈𝐴, 𝑦〉) = 𝐴)) |
5 | opeq2 3653 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
6 | 5 | fveq2d 5357 | . . 3 ⊢ (𝑦 = 𝐵 → (1st ‘〈𝐴, 𝑦〉) = (1st ‘〈𝐴, 𝐵〉)) |
7 | 6 | eqeq1d 2108 | . 2 ⊢ (𝑦 = 𝐵 → ((1st ‘〈𝐴, 𝑦〉) = 𝐴 ↔ (1st ‘〈𝐴, 𝐵〉) = 𝐴)) |
8 | vex 2644 | . . 3 ⊢ 𝑥 ∈ V | |
9 | vex 2644 | . . 3 ⊢ 𝑦 ∈ V | |
10 | 8, 9 | op1st 5975 | . 2 ⊢ (1st ‘〈𝑥, 𝑦〉) = 𝑥 |
11 | 4, 7, 10 | vtocl2g 2705 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1299 ∈ wcel 1448 〈cop 3477 ‘cfv 5059 1st c1st 5967 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-sbc 2863 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-iota 5024 df-fun 5061 df-fv 5067 df-1st 5969 |
This theorem is referenced by: ot1stg 5981 ot2ndg 5982 1stconst 6048 algrflemg 6057 mpoxopn0yelv 6066 mpoxopoveq 6067 xpmapenlem 6672 1stinl 6874 1stinr 6876 mulpipq 7081 frecuzrdgg 10030 qredeu 11571 qnumdenbi 11662 upxp 12222 uptx 12224 |
Copyright terms: Public domain | W3C validator |