| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op2ndg | GIF version | ||
| Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op2ndg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3821 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | fveq2d 5587 | . . 3 ⊢ (𝑥 = 𝐴 → (2nd ‘〈𝑥, 𝑦〉) = (2nd ‘〈𝐴, 𝑦〉)) |
| 3 | 2 | eqeq1d 2215 | . 2 ⊢ (𝑥 = 𝐴 → ((2nd ‘〈𝑥, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝑦〉) = 𝑦)) |
| 4 | opeq2 3822 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 5 | 4 | fveq2d 5587 | . . 3 ⊢ (𝑦 = 𝐵 → (2nd ‘〈𝐴, 𝑦〉) = (2nd ‘〈𝐴, 𝐵〉)) |
| 6 | id 19 | . . 3 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
| 7 | 5, 6 | eqeq12d 2221 | . 2 ⊢ (𝑦 = 𝐵 → ((2nd ‘〈𝐴, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝐵〉) = 𝐵)) |
| 8 | vex 2776 | . . 3 ⊢ 𝑥 ∈ V | |
| 9 | vex 2776 | . . 3 ⊢ 𝑦 ∈ V | |
| 10 | 8, 9 | op2nd 6240 | . 2 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
| 11 | 3, 7, 10 | vtocl2g 2838 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 〈cop 3637 ‘cfv 5276 2nd c2nd 6232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-iota 5237 df-fun 5278 df-fv 5284 df-2nd 6234 |
| This theorem is referenced by: ot2ndg 6246 ot3rdgg 6247 2ndconst 6315 xpmapenlem 6953 2ndinl 7184 2ndinr 7186 mulpipq 7492 suplocexprlem2b 7834 aprcl 8726 frec2uzrdg 10561 frecuzrdgsuc 10566 swrdval 11109 eucalglt 12423 eucalg 12425 qredeu 12463 sqpweven 12541 2sqpwodd 12542 qnumdenbi 12558 upxp 14788 uptx 14790 txmetcnp 15034 opiedgfv 15668 |
| Copyright terms: Public domain | W3C validator |