| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op2ndg | GIF version | ||
| Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op2ndg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3856 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | fveq2d 5627 | . . 3 ⊢ (𝑥 = 𝐴 → (2nd ‘〈𝑥, 𝑦〉) = (2nd ‘〈𝐴, 𝑦〉)) |
| 3 | 2 | eqeq1d 2238 | . 2 ⊢ (𝑥 = 𝐴 → ((2nd ‘〈𝑥, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝑦〉) = 𝑦)) |
| 4 | opeq2 3857 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 5 | 4 | fveq2d 5627 | . . 3 ⊢ (𝑦 = 𝐵 → (2nd ‘〈𝐴, 𝑦〉) = (2nd ‘〈𝐴, 𝐵〉)) |
| 6 | id 19 | . . 3 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
| 7 | 5, 6 | eqeq12d 2244 | . 2 ⊢ (𝑦 = 𝐵 → ((2nd ‘〈𝐴, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝐵〉) = 𝐵)) |
| 8 | vex 2802 | . . 3 ⊢ 𝑥 ∈ V | |
| 9 | vex 2802 | . . 3 ⊢ 𝑦 ∈ V | |
| 10 | 8, 9 | op2nd 6283 | . 2 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
| 11 | 3, 7, 10 | vtocl2g 2865 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 〈cop 3669 ‘cfv 5314 2nd c2nd 6275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-iota 5274 df-fun 5316 df-fv 5322 df-2nd 6277 |
| This theorem is referenced by: ot2ndg 6289 ot3rdgg 6290 2ndconst 6358 xpmapenlem 6998 2ndinl 7230 2ndinr 7232 mulpipq 7547 suplocexprlem2b 7889 aprcl 8781 frec2uzrdg 10618 frecuzrdgsuc 10623 swrdval 11166 eucalglt 12565 eucalg 12567 qredeu 12605 sqpweven 12683 2sqpwodd 12684 qnumdenbi 12700 upxp 14931 uptx 14933 txmetcnp 15177 opiedgfv 15811 |
| Copyright terms: Public domain | W3C validator |