| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > op2ndg | GIF version | ||
| Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) | 
| Ref | Expression | 
|---|---|
| op2ndg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opeq1 3808 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | fveq2d 5562 | . . 3 ⊢ (𝑥 = 𝐴 → (2nd ‘〈𝑥, 𝑦〉) = (2nd ‘〈𝐴, 𝑦〉)) | 
| 3 | 2 | eqeq1d 2205 | . 2 ⊢ (𝑥 = 𝐴 → ((2nd ‘〈𝑥, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝑦〉) = 𝑦)) | 
| 4 | opeq2 3809 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 5 | 4 | fveq2d 5562 | . . 3 ⊢ (𝑦 = 𝐵 → (2nd ‘〈𝐴, 𝑦〉) = (2nd ‘〈𝐴, 𝐵〉)) | 
| 6 | id 19 | . . 3 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
| 7 | 5, 6 | eqeq12d 2211 | . 2 ⊢ (𝑦 = 𝐵 → ((2nd ‘〈𝐴, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝐵〉) = 𝐵)) | 
| 8 | vex 2766 | . . 3 ⊢ 𝑥 ∈ V | |
| 9 | vex 2766 | . . 3 ⊢ 𝑦 ∈ V | |
| 10 | 8, 9 | op2nd 6205 | . 2 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 | 
| 11 | 3, 7, 10 | vtocl2g 2828 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 〈cop 3625 ‘cfv 5258 2nd c2nd 6197 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fv 5266 df-2nd 6199 | 
| This theorem is referenced by: ot2ndg 6211 ot3rdgg 6212 2ndconst 6280 xpmapenlem 6910 2ndinl 7141 2ndinr 7143 mulpipq 7439 suplocexprlem2b 7781 aprcl 8673 frec2uzrdg 10501 frecuzrdgsuc 10506 eucalglt 12225 eucalg 12227 qredeu 12265 sqpweven 12343 2sqpwodd 12344 qnumdenbi 12360 upxp 14508 uptx 14510 txmetcnp 14754 | 
| Copyright terms: Public domain | W3C validator |