![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > op2ndg | GIF version |
Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
Ref | Expression |
---|---|
op2ndg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3628 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
2 | 1 | fveq2d 5322 | . . 3 ⊢ (𝑥 = 𝐴 → (2nd ‘〈𝑥, 𝑦〉) = (2nd ‘〈𝐴, 𝑦〉)) |
3 | 2 | eqeq1d 2097 | . 2 ⊢ (𝑥 = 𝐴 → ((2nd ‘〈𝑥, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝑦〉) = 𝑦)) |
4 | opeq2 3629 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
5 | 4 | fveq2d 5322 | . . 3 ⊢ (𝑦 = 𝐵 → (2nd ‘〈𝐴, 𝑦〉) = (2nd ‘〈𝐴, 𝐵〉)) |
6 | id 19 | . . 3 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
7 | 5, 6 | eqeq12d 2103 | . 2 ⊢ (𝑦 = 𝐵 → ((2nd ‘〈𝐴, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝐵〉) = 𝐵)) |
8 | vex 2623 | . . 3 ⊢ 𝑥 ∈ V | |
9 | vex 2623 | . . 3 ⊢ 𝑦 ∈ V | |
10 | 8, 9 | op2nd 5932 | . 2 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
11 | 3, 7, 10 | vtocl2g 2684 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1290 ∈ wcel 1439 〈cop 3453 ‘cfv 5028 2nd c2nd 5924 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-sbc 2842 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-mpt 3907 df-id 4129 df-xp 4457 df-rel 4458 df-cnv 4459 df-co 4460 df-dm 4461 df-rn 4462 df-iota 4993 df-fun 5030 df-fv 5036 df-2nd 5926 |
This theorem is referenced by: ot2ndg 5938 ot3rdgg 5939 2ndconst 6001 xpmapenlem 6619 2ndinl 6820 2ndinr 6822 mulpipq 6985 frec2uzrdg 9870 frecuzrdgsuc 9875 eucalglt 11371 eucalg 11373 qredeu 11411 sqpweven 11485 2sqpwodd 11486 qnumdenbi 11502 |
Copyright terms: Public domain | W3C validator |