ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2ndg GIF version

Theorem op2ndg 6244
Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
Assertion
Ref Expression
op2ndg ((𝐴𝑉𝐵𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)

Proof of Theorem op2ndg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3821 . . . 4 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
21fveq2d 5587 . . 3 (𝑥 = 𝐴 → (2nd ‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝐴, 𝑦⟩))
32eqeq1d 2215 . 2 (𝑥 = 𝐴 → ((2nd ‘⟨𝑥, 𝑦⟩) = 𝑦 ↔ (2nd ‘⟨𝐴, 𝑦⟩) = 𝑦))
4 opeq2 3822 . . . 4 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
54fveq2d 5587 . . 3 (𝑦 = 𝐵 → (2nd ‘⟨𝐴, 𝑦⟩) = (2nd ‘⟨𝐴, 𝐵⟩))
6 id 19 . . 3 (𝑦 = 𝐵𝑦 = 𝐵)
75, 6eqeq12d 2221 . 2 (𝑦 = 𝐵 → ((2nd ‘⟨𝐴, 𝑦⟩) = 𝑦 ↔ (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵))
8 vex 2776 . . 3 𝑥 ∈ V
9 vex 2776 . . 3 𝑦 ∈ V
108, 9op2nd 6240 . 2 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
113, 7, 10vtocl2g 2838 1 ((𝐴𝑉𝐵𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  cop 3637  cfv 5276  2nd c2nd 6232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-iota 5237  df-fun 5278  df-fv 5284  df-2nd 6234
This theorem is referenced by:  ot2ndg  6246  ot3rdgg  6247  2ndconst  6315  xpmapenlem  6953  2ndinl  7184  2ndinr  7186  mulpipq  7492  suplocexprlem2b  7834  aprcl  8726  frec2uzrdg  10561  frecuzrdgsuc  10566  swrdval  11109  eucalglt  12423  eucalg  12425  qredeu  12463  sqpweven  12541  2sqpwodd  12542  qnumdenbi  12558  upxp  14788  uptx  14790  txmetcnp  15034  opiedgfv  15668
  Copyright terms: Public domain W3C validator