Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > op2ndg | GIF version |
Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
Ref | Expression |
---|---|
op2ndg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3758 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
2 | 1 | fveq2d 5490 | . . 3 ⊢ (𝑥 = 𝐴 → (2nd ‘〈𝑥, 𝑦〉) = (2nd ‘〈𝐴, 𝑦〉)) |
3 | 2 | eqeq1d 2174 | . 2 ⊢ (𝑥 = 𝐴 → ((2nd ‘〈𝑥, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝑦〉) = 𝑦)) |
4 | opeq2 3759 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
5 | 4 | fveq2d 5490 | . . 3 ⊢ (𝑦 = 𝐵 → (2nd ‘〈𝐴, 𝑦〉) = (2nd ‘〈𝐴, 𝐵〉)) |
6 | id 19 | . . 3 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
7 | 5, 6 | eqeq12d 2180 | . 2 ⊢ (𝑦 = 𝐵 → ((2nd ‘〈𝐴, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝐵〉) = 𝐵)) |
8 | vex 2729 | . . 3 ⊢ 𝑥 ∈ V | |
9 | vex 2729 | . . 3 ⊢ 𝑦 ∈ V | |
10 | 8, 9 | op2nd 6115 | . 2 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
11 | 3, 7, 10 | vtocl2g 2790 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 〈cop 3579 ‘cfv 5188 2nd c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fv 5196 df-2nd 6109 |
This theorem is referenced by: ot2ndg 6121 ot3rdgg 6122 2ndconst 6190 xpmapenlem 6815 2ndinl 7040 2ndinr 7042 mulpipq 7313 suplocexprlem2b 7655 aprcl 8544 frec2uzrdg 10344 frecuzrdgsuc 10349 eucalglt 11989 eucalg 11991 qredeu 12029 sqpweven 12107 2sqpwodd 12108 qnumdenbi 12124 upxp 12912 uptx 12914 txmetcnp 13158 |
Copyright terms: Public domain | W3C validator |