![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0wdom | Structured version Visualization version GIF version |
Description: Any set weakly dominates the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
0wdom | ⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ ∅ = ∅ | |
2 | 1 | orci 864 | . 2 ⊢ (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋–onto→∅) |
3 | brwdom 9638 | . 2 ⊢ (𝑋 ∈ 𝑉 → (∅ ≼* 𝑋 ↔ (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋–onto→∅))) | |
4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∅c0 4352 class class class wbr 5166 –onto→wfo 6573 ≼* cwdom 9635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-fn 6578 df-fo 6581 df-wdom 9636 |
This theorem is referenced by: brwdom2 9644 wdomtr 9646 |
Copyright terms: Public domain | W3C validator |