| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0wdom | Structured version Visualization version GIF version | ||
| Description: Any set weakly dominates the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| 0wdom | ⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ ∅ = ∅ | |
| 2 | 1 | orci 865 | . 2 ⊢ (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋–onto→∅) |
| 3 | brwdom 9589 | . 2 ⊢ (𝑋 ∈ 𝑉 → (∅ ≼* 𝑋 ↔ (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋–onto→∅))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∅c0 4313 class class class wbr 5123 –onto→wfo 6539 ≼* cwdom 9586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-fn 6544 df-fo 6547 df-wdom 9587 |
| This theorem is referenced by: brwdom2 9595 wdomtr 9597 |
| Copyright terms: Public domain | W3C validator |