| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0wdom | Structured version Visualization version GIF version | ||
| Description: Any set weakly dominates the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| 0wdom | ⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ ∅ = ∅ | |
| 2 | 1 | orci 865 | . 2 ⊢ (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋–onto→∅) |
| 3 | brwdom 9453 | . 2 ⊢ (𝑋 ∈ 𝑉 → (∅ ≼* 𝑋 ↔ (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋–onto→∅))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∅c0 4280 class class class wbr 5089 –onto→wfo 6479 ≼* cwdom 9450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-fn 6484 df-fo 6487 df-wdom 9451 |
| This theorem is referenced by: brwdom2 9459 wdomtr 9461 |
| Copyright terms: Public domain | W3C validator |