| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0wdom | Structured version Visualization version GIF version | ||
| Description: Any set weakly dominates the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| 0wdom | ⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ∅ = ∅ | |
| 2 | 1 | orci 865 | . 2 ⊢ (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋–onto→∅) |
| 3 | brwdom 9496 | . 2 ⊢ (𝑋 ∈ 𝑉 → (∅ ≼* 𝑋 ↔ (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋–onto→∅))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4292 class class class wbr 5102 –onto→wfo 6497 ≼* cwdom 9493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-fn 6502 df-fo 6505 df-wdom 9494 |
| This theorem is referenced by: brwdom2 9502 wdomtr 9504 |
| Copyright terms: Public domain | W3C validator |