![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0wdom | Structured version Visualization version GIF version |
Description: Any set weakly dominates the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
0wdom | ⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ ∅ = ∅ | |
2 | 1 | orci 866 | . 2 ⊢ (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋–onto→∅) |
3 | brwdom 9614 | . 2 ⊢ (𝑋 ∈ 𝑉 → (∅ ≼* 𝑋 ↔ (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋–onto→∅))) | |
4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 848 = wceq 1539 ∃wex 1778 ∈ wcel 2108 ∅c0 4342 class class class wbr 5151 –onto→wfo 6567 ≼* cwdom 9611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-cnv 5701 df-dm 5703 df-rn 5704 df-fn 6572 df-fo 6575 df-wdom 9612 |
This theorem is referenced by: brwdom2 9620 wdomtr 9622 |
Copyright terms: Public domain | W3C validator |