MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0wdom Structured version   Visualization version   GIF version

Theorem 0wdom 9499
Description: Any set weakly dominates the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
0wdom (𝑋𝑉 → ∅ ≼* 𝑋)

Proof of Theorem 0wdom
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 ∅ = ∅
21orci 865 . 2 (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋onto→∅)
3 brwdom 9496 . 2 (𝑋𝑉 → (∅ ≼* 𝑋 ↔ (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋onto→∅)))
42, 3mpbiri 258 1 (𝑋𝑉 → ∅ ≼* 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wex 1779  wcel 2109  c0 4292   class class class wbr 5102  ontowfo 6497  * cwdom 9493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642  df-fn 6502  df-fo 6505  df-wdom 9494
This theorem is referenced by:  brwdom2  9502  wdomtr  9504
  Copyright terms: Public domain W3C validator