![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0wdom | Structured version Visualization version GIF version |
Description: Any set weakly dominates the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
0wdom | ⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . 3 ⊢ ∅ = ∅ | |
2 | 1 | orci 854 | . 2 ⊢ (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋–onto→∅) |
3 | brwdom 8763 | . 2 ⊢ (𝑋 ∈ 𝑉 → (∅ ≼* 𝑋 ↔ (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋–onto→∅))) | |
4 | 2, 3 | mpbiri 250 | 1 ⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 836 = wceq 1601 ∃wex 1823 ∈ wcel 2107 ∅c0 4141 class class class wbr 4888 –onto→wfo 6135 ≼* cwdom 8753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-xp 5363 df-rel 5364 df-cnv 5365 df-dm 5367 df-rn 5368 df-fn 6140 df-fo 6143 df-wdom 8755 |
This theorem is referenced by: brwdom2 8769 wdomtr 8771 |
Copyright terms: Public domain | W3C validator |