MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0wdom Structured version   Visualization version   GIF version

Theorem 0wdom 9329
Description: Any set weakly dominates the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
0wdom (𝑋𝑉 → ∅ ≼* 𝑋)

Proof of Theorem 0wdom
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 ∅ = ∅
21orci 862 . 2 (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋onto→∅)
3 brwdom 9326 . 2 (𝑋𝑉 → (∅ ≼* 𝑋 ↔ (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋onto→∅)))
42, 3mpbiri 257 1 (𝑋𝑉 → ∅ ≼* 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844   = wceq 1539  wex 1782  wcel 2106  c0 4256   class class class wbr 5074  ontowfo 6431  * cwdom 9323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-fn 6436  df-fo 6439  df-wdom 9324
This theorem is referenced by:  brwdom2  9332  wdomtr  9334
  Copyright terms: Public domain W3C validator