MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0wdom Structured version   Visualization version   GIF version

Theorem 0wdom 9259
Description: Any set weakly dominates the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
0wdom (𝑋𝑉 → ∅ ≼* 𝑋)

Proof of Theorem 0wdom
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 ∅ = ∅
21orci 861 . 2 (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋onto→∅)
3 brwdom 9256 . 2 (𝑋𝑉 → (∅ ≼* 𝑋 ↔ (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋onto→∅)))
42, 3mpbiri 257 1 (𝑋𝑉 → ∅ ≼* 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843   = wceq 1539  wex 1783  wcel 2108  c0 4253   class class class wbr 5070  ontowfo 6416  * cwdom 9253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-fn 6421  df-fo 6424  df-wdom 9254
This theorem is referenced by:  brwdom2  9262  wdomtr  9264
  Copyright terms: Public domain W3C validator