| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fowdom | Structured version Visualization version GIF version | ||
| Description: An onto function implies weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| fowdom | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝑌–onto→𝑋) → 𝑋 ≼* 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3465 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 2 | foeq1 6750 | . . . . . 6 ⊢ (𝑧 = 𝐹 → (𝑧:𝑌–onto→𝑋 ↔ 𝐹:𝑌–onto→𝑋)) | |
| 3 | 2 | spcegv 3560 | . . . . 5 ⊢ (𝐹 ∈ V → (𝐹:𝑌–onto→𝑋 → ∃𝑧 𝑧:𝑌–onto→𝑋)) |
| 4 | 3 | imp 406 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝐹:𝑌–onto→𝑋) → ∃𝑧 𝑧:𝑌–onto→𝑋) |
| 5 | 4 | olcd 874 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐹:𝑌–onto→𝑋) → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
| 6 | fof 6754 | . . . . 5 ⊢ (𝐹:𝑌–onto→𝑋 → 𝐹:𝑌⟶𝑋) | |
| 7 | dmfex 7861 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝐹:𝑌⟶𝑋) → 𝑌 ∈ V) | |
| 8 | 6, 7 | sylan2 593 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝐹:𝑌–onto→𝑋) → 𝑌 ∈ V) |
| 9 | brwdom 9496 | . . . 4 ⊢ (𝑌 ∈ V → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐹:𝑌–onto→𝑋) → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) |
| 11 | 5, 10 | mpbird 257 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹:𝑌–onto→𝑋) → 𝑋 ≼* 𝑌) |
| 12 | 1, 11 | sylan 580 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝑌–onto→𝑋) → 𝑋 ≼* 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 class class class wbr 5102 ⟶wf 6495 –onto→wfo 6497 ≼* cwdom 9493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-wdom 9494 |
| This theorem is referenced by: wdomref 9501 wdomtr 9504 wdom2d 9509 wdomima2g 9515 ixpiunwdom 9519 harwdom 9520 isf32lem10 10291 fin1a2lem7 10335 |
| Copyright terms: Public domain | W3C validator |