MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fowdom Structured version   Visualization version   GIF version

Theorem fowdom 9531
Description: An onto function implies weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
fowdom ((𝐹𝑉𝐹:𝑌onto𝑋) → 𝑋* 𝑌)

Proof of Theorem fowdom
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3471 . 2 (𝐹𝑉𝐹 ∈ V)
2 foeq1 6771 . . . . . 6 (𝑧 = 𝐹 → (𝑧:𝑌onto𝑋𝐹:𝑌onto𝑋))
32spcegv 3566 . . . . 5 (𝐹 ∈ V → (𝐹:𝑌onto𝑋 → ∃𝑧 𝑧:𝑌onto𝑋))
43imp 406 . . . 4 ((𝐹 ∈ V ∧ 𝐹:𝑌onto𝑋) → ∃𝑧 𝑧:𝑌onto𝑋)
54olcd 874 . . 3 ((𝐹 ∈ V ∧ 𝐹:𝑌onto𝑋) → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋))
6 fof 6775 . . . . 5 (𝐹:𝑌onto𝑋𝐹:𝑌𝑋)
7 dmfex 7884 . . . . 5 ((𝐹 ∈ V ∧ 𝐹:𝑌𝑋) → 𝑌 ∈ V)
86, 7sylan2 593 . . . 4 ((𝐹 ∈ V ∧ 𝐹:𝑌onto𝑋) → 𝑌 ∈ V)
9 brwdom 9527 . . . 4 (𝑌 ∈ V → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
108, 9syl 17 . . 3 ((𝐹 ∈ V ∧ 𝐹:𝑌onto𝑋) → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
115, 10mpbird 257 . 2 ((𝐹 ∈ V ∧ 𝐹:𝑌onto𝑋) → 𝑋* 𝑌)
121, 11sylan 580 1 ((𝐹𝑉𝐹:𝑌onto𝑋) → 𝑋* 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  c0 4299   class class class wbr 5110  wf 6510  ontowfo 6512  * cwdom 9524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-wdom 9525
This theorem is referenced by:  wdomref  9532  wdomtr  9535  wdom2d  9540  wdomima2g  9546  ixpiunwdom  9550  harwdom  9551  isf32lem10  10322  fin1a2lem7  10366
  Copyright terms: Public domain W3C validator