MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fowdom Structured version   Visualization version   GIF version

Theorem fowdom 9457
Description: An onto function implies weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
fowdom ((𝐹𝑉𝐹:𝑌onto𝑋) → 𝑋* 𝑌)

Proof of Theorem fowdom
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3457 . 2 (𝐹𝑉𝐹 ∈ V)
2 foeq1 6731 . . . . . 6 (𝑧 = 𝐹 → (𝑧:𝑌onto𝑋𝐹:𝑌onto𝑋))
32spcegv 3547 . . . . 5 (𝐹 ∈ V → (𝐹:𝑌onto𝑋 → ∃𝑧 𝑧:𝑌onto𝑋))
43imp 406 . . . 4 ((𝐹 ∈ V ∧ 𝐹:𝑌onto𝑋) → ∃𝑧 𝑧:𝑌onto𝑋)
54olcd 874 . . 3 ((𝐹 ∈ V ∧ 𝐹:𝑌onto𝑋) → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋))
6 fof 6735 . . . . 5 (𝐹:𝑌onto𝑋𝐹:𝑌𝑋)
7 dmfex 7835 . . . . 5 ((𝐹 ∈ V ∧ 𝐹:𝑌𝑋) → 𝑌 ∈ V)
86, 7sylan2 593 . . . 4 ((𝐹 ∈ V ∧ 𝐹:𝑌onto𝑋) → 𝑌 ∈ V)
9 brwdom 9453 . . . 4 (𝑌 ∈ V → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
108, 9syl 17 . . 3 ((𝐹 ∈ V ∧ 𝐹:𝑌onto𝑋) → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
115, 10mpbird 257 . 2 ((𝐹 ∈ V ∧ 𝐹:𝑌onto𝑋) → 𝑋* 𝑌)
121, 11sylan 580 1 ((𝐹𝑉𝐹:𝑌onto𝑋) → 𝑋* 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  c0 4280   class class class wbr 5089  wf 6477  ontowfo 6479  * cwdom 9450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-wdom 9451
This theorem is referenced by:  wdomref  9458  wdomtr  9461  wdom2d  9466  wdomima2g  9472  ixpiunwdom  9476  harwdom  9477  isf32lem10  10253  fin1a2lem7  10297
  Copyright terms: Public domain W3C validator