![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fowdom | Structured version Visualization version GIF version |
Description: An onto function implies weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
fowdom | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝑌–onto→𝑋) → 𝑋 ≼* 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3499 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
2 | foeq1 6817 | . . . . . 6 ⊢ (𝑧 = 𝐹 → (𝑧:𝑌–onto→𝑋 ↔ 𝐹:𝑌–onto→𝑋)) | |
3 | 2 | spcegv 3597 | . . . . 5 ⊢ (𝐹 ∈ V → (𝐹:𝑌–onto→𝑋 → ∃𝑧 𝑧:𝑌–onto→𝑋)) |
4 | 3 | imp 406 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝐹:𝑌–onto→𝑋) → ∃𝑧 𝑧:𝑌–onto→𝑋) |
5 | 4 | olcd 874 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐹:𝑌–onto→𝑋) → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
6 | fof 6821 | . . . . 5 ⊢ (𝐹:𝑌–onto→𝑋 → 𝐹:𝑌⟶𝑋) | |
7 | dmfex 7928 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝐹:𝑌⟶𝑋) → 𝑌 ∈ V) | |
8 | 6, 7 | sylan2 593 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝐹:𝑌–onto→𝑋) → 𝑌 ∈ V) |
9 | brwdom 9605 | . . . 4 ⊢ (𝑌 ∈ V → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐹:𝑌–onto→𝑋) → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) |
11 | 5, 10 | mpbird 257 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹:𝑌–onto→𝑋) → 𝑋 ≼* 𝑌) |
12 | 1, 11 | sylan 580 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝑌–onto→𝑋) → 𝑋 ≼* 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 class class class wbr 5148 ⟶wf 6559 –onto→wfo 6561 ≼* cwdom 9602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-wdom 9603 |
This theorem is referenced by: wdomref 9610 wdomtr 9613 wdom2d 9618 wdomima2g 9624 ixpiunwdom 9628 harwdom 9629 isf32lem10 10400 fin1a2lem7 10444 |
Copyright terms: Public domain | W3C validator |