MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p1times Structured version   Visualization version   GIF version

Theorem 1p1times 11027
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
1p1times (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))

Proof of Theorem 1p1times
StepHypRef Expression
1 1cnd 10852 . 2 (𝐴 ∈ ℂ → 1 ∈ ℂ)
2 id 22 . 2 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
3 mulid2 10856 . . 3 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
43, 3oveq12d 7249 . 2 (𝐴 ∈ ℂ → ((1 · 𝐴) + (1 · 𝐴)) = (𝐴 + 𝐴))
51, 2, 1, 4joinlmuladdmuld 10884 1 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2111  (class class class)co 7231  cc 10751  1c1 10754   + caddc 10756   · cmul 10758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-ext 2709  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-mulcl 10815  ax-mulcom 10817  ax-mulass 10819  ax-distr 10820  ax-1rid 10823  ax-cnre 10826
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2072  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3422  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-nul 4252  df-if 4454  df-sn 4556  df-pr 4558  df-op 4562  df-uni 4834  df-br 5068  df-iota 6355  df-fv 6405  df-ov 7234
This theorem is referenced by:  addcom  11042  addcomd  11058  eqneg  11576  2times  11990
  Copyright terms: Public domain W3C validator