| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1p1times | Structured version Visualization version GIF version | ||
| Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| 1p1times | ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1cnd 11230 | . 2 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) | |
| 2 | id 22 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 3 | mullid 11234 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
| 4 | 3, 3 | oveq12d 7423 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 · 𝐴) + (1 · 𝐴)) = (𝐴 + 𝐴)) |
| 5 | 1, 2, 1, 4 | joinlmuladdmuld 11262 | 1 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 1c1 11130 + caddc 11132 · cmul 11134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-mulcl 11191 ax-mulcom 11193 ax-mulass 11195 ax-distr 11196 ax-1rid 11199 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: addcom 11421 addcomd 11437 eqneg 11961 2times 12376 |
| Copyright terms: Public domain | W3C validator |