MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p1times Structured version   Visualization version   GIF version

Theorem 1p1times 11076
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
1p1times (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))

Proof of Theorem 1p1times
StepHypRef Expression
1 1cnd 10901 . 2 (𝐴 ∈ ℂ → 1 ∈ ℂ)
2 id 22 . 2 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
3 mulid2 10905 . . 3 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
43, 3oveq12d 7273 . 2 (𝐴 ∈ ℂ → ((1 · 𝐴) + (1 · 𝐴)) = (𝐴 + 𝐴))
51, 2, 1, 4joinlmuladdmuld 10933 1 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  (class class class)co 7255  cc 10800  1c1 10803   + caddc 10805   · cmul 10807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-mulcl 10864  ax-mulcom 10866  ax-mulass 10868  ax-distr 10869  ax-1rid 10872  ax-cnre 10875
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  addcom  11091  addcomd  11107  eqneg  11625  2times  12039
  Copyright terms: Public domain W3C validator