MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p1times Structured version   Visualization version   GIF version

Theorem 1p1times 11287
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
1p1times (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))

Proof of Theorem 1p1times
StepHypRef Expression
1 1cnd 11110 . 2 (𝐴 ∈ ℂ → 1 ∈ ℂ)
2 id 22 . 2 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
3 mullid 11114 . . 3 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
43, 3oveq12d 7367 . 2 (𝐴 ∈ ℂ → ((1 · 𝐴) + (1 · 𝐴)) = (𝐴 + 𝐴))
51, 2, 1, 4joinlmuladdmuld 11142 1 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7349  cc 11007  1c1 11010   + caddc 11012   · cmul 11014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-mulcl 11071  ax-mulcom 11073  ax-mulass 11075  ax-distr 11076  ax-1rid 11079  ax-cnre 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-iota 6438  df-fv 6490  df-ov 7352
This theorem is referenced by:  addcom  11302  addcomd  11318  eqneg  11844  2times  12259
  Copyright terms: Public domain W3C validator