![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1p1times | Structured version Visualization version GIF version |
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
1p1times | ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd 10371 | . 2 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) | |
2 | id 22 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
3 | mulid2 10375 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
4 | 3, 3 | oveq12d 6940 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 · 𝐴) + (1 · 𝐴)) = (𝐴 + 𝐴)) |
5 | 1, 2, 1, 4 | joinlmuladdmuld 10404 | 1 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 (class class class)co 6922 ℂcc 10270 1c1 10273 + caddc 10275 · cmul 10277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-mulcl 10334 ax-mulcom 10336 ax-mulass 10338 ax-distr 10339 ax-1rid 10342 ax-cnre 10345 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-iota 6099 df-fv 6143 df-ov 6925 |
This theorem is referenced by: addcom 10562 addcomd 10578 eqneg 11095 2times 11518 |
Copyright terms: Public domain | W3C validator |