Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1p1times | Structured version Visualization version GIF version |
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
1p1times | ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd 10852 | . 2 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) | |
2 | id 22 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
3 | mulid2 10856 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
4 | 3, 3 | oveq12d 7249 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 · 𝐴) + (1 · 𝐴)) = (𝐴 + 𝐴)) |
5 | 1, 2, 1, 4 | joinlmuladdmuld 10884 | 1 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2111 (class class class)co 7231 ℂcc 10751 1c1 10754 + caddc 10756 · cmul 10758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-ext 2709 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-mulcl 10815 ax-mulcom 10817 ax-mulass 10819 ax-distr 10820 ax-1rid 10823 ax-cnre 10826 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2072 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3422 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-nul 4252 df-if 4454 df-sn 4556 df-pr 4558 df-op 4562 df-uni 4834 df-br 5068 df-iota 6355 df-fv 6405 df-ov 7234 |
This theorem is referenced by: addcom 11042 addcomd 11058 eqneg 11576 2times 11990 |
Copyright terms: Public domain | W3C validator |