Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1p1times | Structured version Visualization version GIF version |
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
1p1times | ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd 10901 | . 2 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) | |
2 | id 22 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
3 | mulid2 10905 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
4 | 3, 3 | oveq12d 7273 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 · 𝐴) + (1 · 𝐴)) = (𝐴 + 𝐴)) |
5 | 1, 2, 1, 4 | joinlmuladdmuld 10933 | 1 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 1c1 10803 + caddc 10805 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-mulcom 10866 ax-mulass 10868 ax-distr 10869 ax-1rid 10872 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: addcom 11091 addcomd 11107 eqneg 11625 2times 12039 |
Copyright terms: Public domain | W3C validator |