MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p1times Structured version   Visualization version   GIF version

Theorem 1p1times 11352
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
1p1times (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))

Proof of Theorem 1p1times
StepHypRef Expression
1 1cnd 11176 . 2 (𝐴 ∈ ℂ → 1 ∈ ℂ)
2 id 22 . 2 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
3 mullid 11180 . . 3 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
43, 3oveq12d 7408 . 2 (𝐴 ∈ ℂ → ((1 · 𝐴) + (1 · 𝐴)) = (𝐴 + 𝐴))
51, 2, 1, 4joinlmuladdmuld 11208 1 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7390  cc 11073  1c1 11076   + caddc 11078   · cmul 11080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-mulcl 11137  ax-mulcom 11139  ax-mulass 11141  ax-distr 11142  ax-1rid 11145  ax-cnre 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393
This theorem is referenced by:  addcom  11367  addcomd  11383  eqneg  11909  2times  12324
  Copyright terms: Public domain W3C validator