MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqneg Structured version   Visualization version   GIF version

Theorem eqneg 11878
Description: A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
eqneg (𝐴 ∈ ℂ → (𝐴 = -𝐴𝐴 = 0))

Proof of Theorem eqneg
StepHypRef Expression
1 1p1times 11321 . . 3 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
2 ax-1cn 11102 . . . . . 6 1 ∈ ℂ
32, 2addcli 11156 . . . . 5 (1 + 1) ∈ ℂ
43mul01i 11340 . . . 4 ((1 + 1) · 0) = 0
5 negid 11445 . . . 4 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
64, 5eqtr4id 2783 . . 3 (𝐴 ∈ ℂ → ((1 + 1) · 0) = (𝐴 + -𝐴))
71, 6eqeq12d 2745 . 2 (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ (𝐴 + 𝐴) = (𝐴 + -𝐴)))
8 id 22 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
9 0cnd 11143 . . 3 (𝐴 ∈ ℂ → 0 ∈ ℂ)
103a1i 11 . . 3 (𝐴 ∈ ℂ → (1 + 1) ∈ ℂ)
11 1re 11150 . . . . . 6 1 ∈ ℝ
1211, 11readdcli 11165 . . . . 5 (1 + 1) ∈ ℝ
13 0lt1 11676 . . . . . 6 0 < 1
1411, 11, 13, 13addgt0ii 11696 . . . . 5 0 < (1 + 1)
1512, 14gt0ne0ii 11690 . . . 4 (1 + 1) ≠ 0
1615a1i 11 . . 3 (𝐴 ∈ ℂ → (1 + 1) ≠ 0)
178, 9, 10, 16mulcand 11787 . 2 (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ 𝐴 = 0))
18 negcl 11397 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
198, 8, 18addcand 11353 . 2 (𝐴 ∈ ℂ → ((𝐴 + 𝐴) = (𝐴 + -𝐴) ↔ 𝐴 = -𝐴))
207, 17, 193bitr3rd 310 1 (𝐴 ∈ ℂ → (𝐴 = -𝐴𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  -cneg 11382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384
This theorem is referenced by:  eqnegd  11879  eqnegi  11887  addsubeq0  47290
  Copyright terms: Public domain W3C validator