![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqneg | Structured version Visualization version GIF version |
Description: A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
eqneg | ⊢ (𝐴 ∈ ℂ → (𝐴 = -𝐴 ↔ 𝐴 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1p1times 11430 | . . 3 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | |
2 | ax-1cn 11211 | . . . . . 6 ⊢ 1 ∈ ℂ | |
3 | 2, 2 | addcli 11265 | . . . . 5 ⊢ (1 + 1) ∈ ℂ |
4 | 3 | mul01i 11449 | . . . 4 ⊢ ((1 + 1) · 0) = 0 |
5 | negid 11554 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | |
6 | 4, 5 | eqtr4id 2794 | . . 3 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 0) = (𝐴 + -𝐴)) |
7 | 1, 6 | eqeq12d 2751 | . 2 ⊢ (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ (𝐴 + 𝐴) = (𝐴 + -𝐴))) |
8 | id 22 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
9 | 0cnd 11252 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℂ) | |
10 | 3 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 1) ∈ ℂ) |
11 | 1re 11259 | . . . . . 6 ⊢ 1 ∈ ℝ | |
12 | 11, 11 | readdcli 11274 | . . . . 5 ⊢ (1 + 1) ∈ ℝ |
13 | 0lt1 11783 | . . . . . 6 ⊢ 0 < 1 | |
14 | 11, 11, 13, 13 | addgt0ii 11803 | . . . . 5 ⊢ 0 < (1 + 1) |
15 | 12, 14 | gt0ne0ii 11797 | . . . 4 ⊢ (1 + 1) ≠ 0 |
16 | 15 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 1) ≠ 0) |
17 | 8, 9, 10, 16 | mulcand 11894 | . 2 ⊢ (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ 𝐴 = 0)) |
18 | negcl 11506 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
19 | 8, 8, 18 | addcand 11462 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 + 𝐴) = (𝐴 + -𝐴) ↔ 𝐴 = -𝐴)) |
20 | 7, 17, 19 | 3bitr3rd 310 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 = -𝐴 ↔ 𝐴 = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 (class class class)co 7431 ℂcc 11151 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 -cneg 11491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 |
This theorem is referenced by: eqnegd 11986 eqnegi 11994 addsubeq0 47246 |
Copyright terms: Public domain | W3C validator |