| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqneg | Structured version Visualization version GIF version | ||
| Description: A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| eqneg | ⊢ (𝐴 ∈ ℂ → (𝐴 = -𝐴 ↔ 𝐴 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1p1times 11406 | . . 3 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | |
| 2 | ax-1cn 11187 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 3 | 2, 2 | addcli 11241 | . . . . 5 ⊢ (1 + 1) ∈ ℂ |
| 4 | 3 | mul01i 11425 | . . . 4 ⊢ ((1 + 1) · 0) = 0 |
| 5 | negid 11530 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | |
| 6 | 4, 5 | eqtr4id 2789 | . . 3 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 0) = (𝐴 + -𝐴)) |
| 7 | 1, 6 | eqeq12d 2751 | . 2 ⊢ (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ (𝐴 + 𝐴) = (𝐴 + -𝐴))) |
| 8 | id 22 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 9 | 0cnd 11228 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℂ) | |
| 10 | 3 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 1) ∈ ℂ) |
| 11 | 1re 11235 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 12 | 11, 11 | readdcli 11250 | . . . . 5 ⊢ (1 + 1) ∈ ℝ |
| 13 | 0lt1 11759 | . . . . . 6 ⊢ 0 < 1 | |
| 14 | 11, 11, 13, 13 | addgt0ii 11779 | . . . . 5 ⊢ 0 < (1 + 1) |
| 15 | 12, 14 | gt0ne0ii 11773 | . . . 4 ⊢ (1 + 1) ≠ 0 |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 1) ≠ 0) |
| 17 | 8, 9, 10, 16 | mulcand 11870 | . 2 ⊢ (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ 𝐴 = 0)) |
| 18 | negcl 11482 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 19 | 8, 8, 18 | addcand 11438 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 + 𝐴) = (𝐴 + -𝐴) ↔ 𝐴 = -𝐴)) |
| 20 | 7, 17, 19 | 3bitr3rd 310 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 = -𝐴 ↔ 𝐴 = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 (class class class)co 7405 ℂcc 11127 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 -cneg 11467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 |
| This theorem is referenced by: eqnegd 11962 eqnegi 11970 addsubeq0 47325 |
| Copyright terms: Public domain | W3C validator |