MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqneg Structured version   Visualization version   GIF version

Theorem eqneg 12014
Description: A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
eqneg (𝐴 ∈ ℂ → (𝐴 = -𝐴𝐴 = 0))

Proof of Theorem eqneg
StepHypRef Expression
1 1p1times 11461 . . 3 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
2 ax-1cn 11242 . . . . . 6 1 ∈ ℂ
32, 2addcli 11296 . . . . 5 (1 + 1) ∈ ℂ
43mul01i 11480 . . . 4 ((1 + 1) · 0) = 0
5 negid 11583 . . . 4 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
64, 5eqtr4id 2799 . . 3 (𝐴 ∈ ℂ → ((1 + 1) · 0) = (𝐴 + -𝐴))
71, 6eqeq12d 2756 . 2 (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ (𝐴 + 𝐴) = (𝐴 + -𝐴)))
8 id 22 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
9 0cnd 11283 . . 3 (𝐴 ∈ ℂ → 0 ∈ ℂ)
103a1i 11 . . 3 (𝐴 ∈ ℂ → (1 + 1) ∈ ℂ)
11 1re 11290 . . . . . 6 1 ∈ ℝ
1211, 11readdcli 11305 . . . . 5 (1 + 1) ∈ ℝ
13 0lt1 11812 . . . . . 6 0 < 1
1411, 11, 13, 13addgt0ii 11832 . . . . 5 0 < (1 + 1)
1512, 14gt0ne0ii 11826 . . . 4 (1 + 1) ≠ 0
1615a1i 11 . . 3 (𝐴 ∈ ℂ → (1 + 1) ≠ 0)
178, 9, 10, 16mulcand 11923 . 2 (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ 𝐴 = 0))
18 negcl 11536 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
198, 8, 18addcand 11493 . 2 (𝐴 ∈ ℂ → ((𝐴 + 𝐴) = (𝐴 + -𝐴) ↔ 𝐴 = -𝐴))
207, 17, 193bitr3rd 310 1 (𝐴 ∈ ℂ → (𝐴 = -𝐴𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wne 2946  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  -cneg 11521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523
This theorem is referenced by:  eqnegd  12015  eqnegi  12023  addsubeq0  47211
  Copyright terms: Public domain W3C validator