| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mullid | Structured version Visualization version GIF version | ||
| Description: Identity law for multiplication. See mulrid 11225 for commuted version. (Contributed by NM, 8-Oct-1999.) |
| Ref | Expression |
|---|---|
| mullid | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11179 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | mulcom 11207 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
| 4 | mulrid 11225 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 5 | 3, 4 | eqtrd 2769 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7399 ℂcc 11119 1c1 11122 · cmul 11126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-mulcl 11183 ax-mulcom 11185 ax-mulass 11187 ax-distr 11188 ax-1rid 11191 ax-cnre 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-iota 6480 df-fv 6535 df-ov 7402 |
| This theorem is referenced by: mullidi 11232 mullidd 11245 muladd11 11397 1p1times 11398 mul02lem1 11403 cnegex2 11409 mulm1 11670 div1 11923 subdivcomb2 11929 recdiv 11939 divdiv2 11945 conjmul 11950 ser1const 14065 expp1 14075 recan 15342 arisum 15863 geo2sum 15876 prodrblem 15932 prodmolem2a 15937 risefac1 16036 fallfac1 16037 bpoly3 16061 bpoly4 16062 sinhval 16157 coshval 16158 demoivreALT 16204 gcdadd 16530 gcdid 16531 cncrng 21336 cncrngOLD 21337 cnfld1 21341 cnfld1OLD 21342 blcvx 24722 icccvx 24884 cnlmod 25076 coeidp 26206 dgrid 26207 quartlem1 26803 asinsinlem 26837 asinsin 26838 atantan 26869 musumsum 27138 brbtwn2 28816 axsegconlem1 28828 ax5seglem1 28839 ax5seglem2 28840 ax5seglem4 28843 ax5seglem5 28844 axeuclid 28874 axcontlem2 28876 axcontlem4 28878 cncvcOLD 30496 dvcosax 45885 |
| Copyright terms: Public domain | W3C validator |