| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mullid | Structured version Visualization version GIF version | ||
| Description: Identity law for multiplication. See mulrid 11117 for commuted version. (Contributed by NM, 8-Oct-1999.) |
| Ref | Expression |
|---|---|
| mullid | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11071 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | mulcom 11099 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
| 4 | mulrid 11117 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 5 | 3, 4 | eqtrd 2768 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 1c1 11014 · cmul 11018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-mulcl 11075 ax-mulcom 11077 ax-mulass 11079 ax-distr 11080 ax-1rid 11083 ax-cnre 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 |
| This theorem is referenced by: mullidi 11124 mullidd 11137 muladd11 11290 1p1times 11291 mul02lem1 11296 cnegex2 11302 mulm1 11565 div1 11818 subdivcomb2 11824 recdiv 11834 divdiv2 11840 conjmul 11845 ser1const 13967 expp1 13977 recan 15246 arisum 15769 geo2sum 15782 prodrblem 15838 prodmolem2a 15843 risefac1 15942 fallfac1 15943 bpoly3 15967 bpoly4 15968 sinhval 16065 coshval 16066 demoivreALT 16112 gcdadd 16439 gcdid 16440 cncrng 21327 cncrngOLD 21328 cnfld1 21332 cnfld1OLD 21333 blcvx 24714 icccvx 24876 cnlmod 25068 coeidp 26197 dgrid 26198 quartlem1 26795 asinsinlem 26829 asinsin 26830 atantan 26861 musumsum 27130 brbtwn2 28885 axsegconlem1 28897 ax5seglem1 28908 ax5seglem2 28909 ax5seglem4 28912 ax5seglem5 28913 axeuclid 28943 axcontlem2 28945 axcontlem4 28947 cncvcOLD 30565 dvcosax 46048 |
| Copyright terms: Public domain | W3C validator |