| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mullid | Structured version Visualization version GIF version | ||
| Description: Identity law for multiplication. See mulrid 11233 for commuted version. (Contributed by NM, 8-Oct-1999.) |
| Ref | Expression |
|---|---|
| mullid | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11187 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | mulcom 11215 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
| 4 | mulrid 11233 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 5 | 3, 4 | eqtrd 2770 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 1c1 11130 · cmul 11134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-mulcl 11191 ax-mulcom 11193 ax-mulass 11195 ax-distr 11196 ax-1rid 11199 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: mullidi 11240 mullidd 11253 muladd11 11405 1p1times 11406 mul02lem1 11411 cnegex2 11417 mulm1 11678 div1 11931 subdivcomb2 11937 recdiv 11947 divdiv2 11953 conjmul 11958 ser1const 14076 expp1 14086 recan 15355 arisum 15876 geo2sum 15889 prodrblem 15945 prodmolem2a 15950 risefac1 16049 fallfac1 16050 bpoly3 16074 bpoly4 16075 sinhval 16172 coshval 16173 demoivreALT 16219 gcdadd 16545 gcdid 16546 cncrng 21351 cncrngOLD 21352 cnfld1 21356 cnfld1OLD 21357 blcvx 24737 icccvx 24899 cnlmod 25091 coeidp 26221 dgrid 26222 quartlem1 26819 asinsinlem 26853 asinsin 26854 atantan 26885 musumsum 27154 brbtwn2 28884 axsegconlem1 28896 ax5seglem1 28907 ax5seglem2 28908 ax5seglem4 28911 ax5seglem5 28912 axeuclid 28942 axcontlem2 28944 axcontlem4 28946 cncvcOLD 30564 dvcosax 45955 |
| Copyright terms: Public domain | W3C validator |