![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mullid | Structured version Visualization version GIF version |
Description: Identity law for multiplication. See mulrid 11256 for commuted version. (Contributed by NM, 8-Oct-1999.) |
Ref | Expression |
---|---|
mullid | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11210 | . . 3 ⊢ 1 ∈ ℂ | |
2 | mulcom 11238 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
4 | mulrid 11256 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
5 | 3, 4 | eqtrd 2774 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 1c1 11153 · cmul 11157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-mulcl 11214 ax-mulcom 11216 ax-mulass 11218 ax-distr 11219 ax-1rid 11222 ax-cnre 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 |
This theorem is referenced by: mullidi 11263 mullidd 11276 muladd11 11428 1p1times 11429 mul02lem1 11434 cnegex2 11440 mulm1 11701 div1 11954 subdivcomb2 11960 recdiv 11970 divdiv2 11976 conjmul 11981 ser1const 14095 expp1 14105 recan 15371 arisum 15892 geo2sum 15905 prodrblem 15961 prodmolem2a 15966 risefac1 16065 fallfac1 16066 bpoly3 16090 bpoly4 16091 sinhval 16186 coshval 16187 demoivreALT 16233 gcdadd 16559 gcdid 16560 cncrng 21418 cncrngOLD 21419 cnfld1 21423 cnfld1OLD 21424 blcvx 24833 icccvx 24994 cnlmod 25186 coeidp 26317 dgrid 26318 quartlem1 26914 asinsinlem 26948 asinsin 26949 atantan 26980 musumsum 27249 brbtwn2 28934 axsegconlem1 28946 ax5seglem1 28957 ax5seglem2 28958 ax5seglem4 28961 ax5seglem5 28962 axeuclid 28992 axcontlem2 28994 axcontlem4 28996 cncvcOLD 30611 dvcosax 45881 |
Copyright terms: Public domain | W3C validator |