| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mullid | Structured version Visualization version GIF version | ||
| Description: Identity law for multiplication. See mulrid 11107 for commuted version. (Contributed by NM, 8-Oct-1999.) |
| Ref | Expression |
|---|---|
| mullid | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11061 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | mulcom 11089 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
| 4 | mulrid 11107 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 5 | 3, 4 | eqtrd 2766 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 1c1 11004 · cmul 11008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-mulcl 11065 ax-mulcom 11067 ax-mulass 11069 ax-distr 11070 ax-1rid 11073 ax-cnre 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: mullidi 11114 mullidd 11127 muladd11 11280 1p1times 11281 mul02lem1 11286 cnegex2 11292 mulm1 11555 div1 11808 subdivcomb2 11814 recdiv 11824 divdiv2 11830 conjmul 11835 ser1const 13962 expp1 13972 recan 15241 arisum 15764 geo2sum 15777 prodrblem 15833 prodmolem2a 15838 risefac1 15937 fallfac1 15938 bpoly3 15962 bpoly4 15963 sinhval 16060 coshval 16061 demoivreALT 16107 gcdadd 16434 gcdid 16435 cncrng 21323 cncrngOLD 21324 cnfld1 21328 cnfld1OLD 21329 blcvx 24711 icccvx 24873 cnlmod 25065 coeidp 26194 dgrid 26195 quartlem1 26792 asinsinlem 26826 asinsin 26827 atantan 26858 musumsum 27127 brbtwn2 28881 axsegconlem1 28893 ax5seglem1 28904 ax5seglem2 28905 ax5seglem4 28908 ax5seglem5 28909 axeuclid 28939 axcontlem2 28941 axcontlem4 28943 cncvcOLD 30558 dvcosax 45963 |
| Copyright terms: Public domain | W3C validator |