![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mullid | Structured version Visualization version GIF version |
Description: Identity law for multiplication. See mulrid 11288 for commuted version. (Contributed by NM, 8-Oct-1999.) |
Ref | Expression |
---|---|
mullid | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11242 | . . 3 ⊢ 1 ∈ ℂ | |
2 | mulcom 11270 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
3 | 1, 2 | mpan 689 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
4 | mulrid 11288 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
5 | 3, 4 | eqtrd 2780 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 1c1 11185 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-mulcom 11248 ax-mulass 11250 ax-distr 11251 ax-1rid 11254 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: mullidi 11295 mullidd 11308 muladd11 11460 1p1times 11461 mul02lem1 11466 cnegex2 11472 mulm1 11731 div1 11984 subdivcomb2 11990 recdiv 12000 divdiv2 12006 conjmul 12011 ser1const 14109 expp1 14119 recan 15385 arisum 15908 geo2sum 15921 prodrblem 15977 prodmolem2a 15982 risefac1 16081 fallfac1 16082 bpoly3 16106 bpoly4 16107 sinhval 16202 coshval 16203 demoivreALT 16249 gcdadd 16572 gcdid 16573 cncrng 21424 cncrngOLD 21425 cnfld1 21429 cnfld1OLD 21430 blcvx 24839 icccvx 25000 cnlmod 25192 coeidp 26323 dgrid 26324 quartlem1 26918 asinsinlem 26952 asinsin 26953 atantan 26984 musumsum 27253 brbtwn2 28938 axsegconlem1 28950 ax5seglem1 28961 ax5seglem2 28962 ax5seglem4 28965 ax5seglem5 28966 axeuclid 28996 axcontlem2 28998 axcontlem4 29000 cncvcOLD 30615 dvcosax 45847 |
Copyright terms: Public domain | W3C validator |