| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mullid | Structured version Visualization version GIF version | ||
| Description: Identity law for multiplication. See mulrid 11172 for commuted version. (Contributed by NM, 8-Oct-1999.) |
| Ref | Expression |
|---|---|
| mullid | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11126 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | mulcom 11154 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
| 4 | mulrid 11172 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 5 | 3, 4 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 1c1 11069 · cmul 11073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-mulcom 11132 ax-mulass 11134 ax-distr 11135 ax-1rid 11138 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: mullidi 11179 mullidd 11192 muladd11 11344 1p1times 11345 mul02lem1 11350 cnegex2 11356 mulm1 11619 div1 11872 subdivcomb2 11878 recdiv 11888 divdiv2 11894 conjmul 11899 ser1const 14023 expp1 14033 recan 15303 arisum 15826 geo2sum 15839 prodrblem 15895 prodmolem2a 15900 risefac1 15999 fallfac1 16000 bpoly3 16024 bpoly4 16025 sinhval 16122 coshval 16123 demoivreALT 16169 gcdadd 16496 gcdid 16497 cncrng 21300 cncrngOLD 21301 cnfld1 21305 cnfld1OLD 21306 blcvx 24686 icccvx 24848 cnlmod 25040 coeidp 26169 dgrid 26170 quartlem1 26767 asinsinlem 26801 asinsin 26802 atantan 26833 musumsum 27102 brbtwn2 28832 axsegconlem1 28844 ax5seglem1 28855 ax5seglem2 28856 ax5seglem4 28859 ax5seglem5 28860 axeuclid 28890 axcontlem2 28892 axcontlem4 28894 cncvcOLD 30512 dvcosax 45924 |
| Copyright terms: Public domain | W3C validator |