| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mullid | Structured version Visualization version GIF version | ||
| Description: Identity law for multiplication. See mulrid 11179 for commuted version. (Contributed by NM, 8-Oct-1999.) |
| Ref | Expression |
|---|---|
| mullid | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11133 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | mulcom 11161 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
| 4 | mulrid 11179 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 5 | 3, 4 | eqtrd 2765 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 1c1 11076 · cmul 11080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-mulcom 11139 ax-mulass 11141 ax-distr 11142 ax-1rid 11145 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: mullidi 11186 mullidd 11199 muladd11 11351 1p1times 11352 mul02lem1 11357 cnegex2 11363 mulm1 11626 div1 11879 subdivcomb2 11885 recdiv 11895 divdiv2 11901 conjmul 11906 ser1const 14030 expp1 14040 recan 15310 arisum 15833 geo2sum 15846 prodrblem 15902 prodmolem2a 15907 risefac1 16006 fallfac1 16007 bpoly3 16031 bpoly4 16032 sinhval 16129 coshval 16130 demoivreALT 16176 gcdadd 16503 gcdid 16504 cncrng 21307 cncrngOLD 21308 cnfld1 21312 cnfld1OLD 21313 blcvx 24693 icccvx 24855 cnlmod 25047 coeidp 26176 dgrid 26177 quartlem1 26774 asinsinlem 26808 asinsin 26809 atantan 26840 musumsum 27109 brbtwn2 28839 axsegconlem1 28851 ax5seglem1 28862 ax5seglem2 28863 ax5seglem4 28866 ax5seglem5 28867 axeuclid 28897 axcontlem2 28899 axcontlem4 28901 cncvcOLD 30519 dvcosax 45931 |
| Copyright terms: Public domain | W3C validator |