Proof of Theorem addcomd
Step | Hyp | Ref
| Expression |
1 | | 1cnd 10979 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℂ) |
2 | 1, 1 | addcld 11003 |
. . . . . . 7
⊢ (𝜑 → (1 + 1) ∈
ℂ) |
3 | | muld.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℂ) |
4 | | addcomd.2 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℂ) |
5 | 2, 3, 4 | adddid 11008 |
. . . . . 6
⊢ (𝜑 → ((1 + 1) · (𝐴 + 𝐵)) = (((1 + 1) · 𝐴) + ((1 + 1) · 𝐵))) |
6 | 3, 4 | addcld 11003 |
. . . . . . 7
⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
7 | | 1p1times 11155 |
. . . . . . 7
⊢ ((𝐴 + 𝐵) ∈ ℂ → ((1 + 1) ·
(𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵))) |
8 | 6, 7 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((1 + 1) · (𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵))) |
9 | | 1p1times 11155 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((1 + 1)
· 𝐴) = (𝐴 + 𝐴)) |
10 | 3, 9 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) |
11 | | 1p1times 11155 |
. . . . . . . 8
⊢ (𝐵 ∈ ℂ → ((1 + 1)
· 𝐵) = (𝐵 + 𝐵)) |
12 | 4, 11 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((1 + 1) · 𝐵) = (𝐵 + 𝐵)) |
13 | 10, 12 | oveq12d 7302 |
. . . . . 6
⊢ (𝜑 → (((1 + 1) · 𝐴) + ((1 + 1) · 𝐵)) = ((𝐴 + 𝐴) + (𝐵 + 𝐵))) |
14 | 5, 8, 13 | 3eqtr3rd 2788 |
. . . . 5
⊢ (𝜑 → ((𝐴 + 𝐴) + (𝐵 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵))) |
15 | 3, 3 | addcld 11003 |
. . . . . 6
⊢ (𝜑 → (𝐴 + 𝐴) ∈ ℂ) |
16 | 15, 4, 4 | addassd 11006 |
. . . . 5
⊢ (𝜑 → (((𝐴 + 𝐴) + 𝐵) + 𝐵) = ((𝐴 + 𝐴) + (𝐵 + 𝐵))) |
17 | 6, 3, 4 | addassd 11006 |
. . . . 5
⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + (𝐴 + 𝐵))) |
18 | 14, 16, 17 | 3eqtr4d 2789 |
. . . 4
⊢ (𝜑 → (((𝐴 + 𝐴) + 𝐵) + 𝐵) = (((𝐴 + 𝐵) + 𝐴) + 𝐵)) |
19 | 15, 4 | addcld 11003 |
. . . . 5
⊢ (𝜑 → ((𝐴 + 𝐴) + 𝐵) ∈ ℂ) |
20 | 6, 3 | addcld 11003 |
. . . . 5
⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐴) ∈ ℂ) |
21 | | addcan2 11169 |
. . . . 5
⊢ ((((𝐴 + 𝐴) + 𝐵) ∈ ℂ ∧ ((𝐴 + 𝐵) + 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐴) + 𝐵) + 𝐵) = (((𝐴 + 𝐵) + 𝐴) + 𝐵) ↔ ((𝐴 + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + 𝐴))) |
22 | 19, 20, 4, 21 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → ((((𝐴 + 𝐴) + 𝐵) + 𝐵) = (((𝐴 + 𝐵) + 𝐴) + 𝐵) ↔ ((𝐴 + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + 𝐴))) |
23 | 18, 22 | mpbid 231 |
. . 3
⊢ (𝜑 → ((𝐴 + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + 𝐴)) |
24 | 3, 3, 4 | addassd 11006 |
. . 3
⊢ (𝜑 → ((𝐴 + 𝐴) + 𝐵) = (𝐴 + (𝐴 + 𝐵))) |
25 | 3, 4, 3 | addassd 11006 |
. . 3
⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐴) = (𝐴 + (𝐵 + 𝐴))) |
26 | 23, 24, 25 | 3eqtr3d 2787 |
. 2
⊢ (𝜑 → (𝐴 + (𝐴 + 𝐵)) = (𝐴 + (𝐵 + 𝐴))) |
27 | 4, 3 | addcld 11003 |
. . 3
⊢ (𝜑 → (𝐵 + 𝐴) ∈ ℂ) |
28 | | addcan 11168 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℂ ∧ (𝐵 + 𝐴) ∈ ℂ) → ((𝐴 + (𝐴 + 𝐵)) = (𝐴 + (𝐵 + 𝐴)) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
29 | 3, 6, 27, 28 | syl3anc 1370 |
. 2
⊢ (𝜑 → ((𝐴 + (𝐴 + 𝐵)) = (𝐴 + (𝐵 + 𝐴)) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
30 | 26, 29 | mpbid 231 |
1
⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |