| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcom | Structured version Visualization version GIF version | ||
| Description: Addition commutes. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| addcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1cnd 11230 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 1 ∈ ℂ) | |
| 2 | 1, 1 | addcld 11254 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 + 1) ∈ ℂ) |
| 3 | simpl 482 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 4 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 5 | 2, 3, 4 | adddid 11259 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 1) · (𝐴 + 𝐵)) = (((1 + 1) · 𝐴) + ((1 + 1) · 𝐵))) |
| 6 | 3, 4 | addcld 11254 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| 7 | 1p1times 11406 | . . . . . . 7 ⊢ ((𝐴 + 𝐵) ∈ ℂ → ((1 + 1) · (𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵))) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 1) · (𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵))) |
| 9 | 1p1times 11406 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | |
| 10 | 1p1times 11406 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → ((1 + 1) · 𝐵) = (𝐵 + 𝐵)) | |
| 11 | 9, 10 | oveqan12d 7424 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((1 + 1) · 𝐴) + ((1 + 1) · 𝐵)) = ((𝐴 + 𝐴) + (𝐵 + 𝐵))) |
| 12 | 5, 8, 11 | 3eqtr3rd 2779 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐴) + (𝐵 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵))) |
| 13 | 3, 3 | addcld 11254 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐴) ∈ ℂ) |
| 14 | 13, 4, 4 | addassd 11257 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐴) + 𝐵) + 𝐵) = ((𝐴 + 𝐴) + (𝐵 + 𝐵))) |
| 15 | 6, 3, 4 | addassd 11257 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + (𝐴 + 𝐵))) |
| 16 | 12, 14, 15 | 3eqtr4d 2780 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐴) + 𝐵) + 𝐵) = (((𝐴 + 𝐵) + 𝐴) + 𝐵)) |
| 17 | 13, 4 | addcld 11254 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐴) + 𝐵) ∈ ℂ) |
| 18 | 6, 3 | addcld 11254 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐴) ∈ ℂ) |
| 19 | addcan2 11420 | . . . . 5 ⊢ ((((𝐴 + 𝐴) + 𝐵) ∈ ℂ ∧ ((𝐴 + 𝐵) + 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐴) + 𝐵) + 𝐵) = (((𝐴 + 𝐵) + 𝐴) + 𝐵) ↔ ((𝐴 + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + 𝐴))) | |
| 20 | 17, 18, 4, 19 | syl3anc 1373 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐴) + 𝐵) + 𝐵) = (((𝐴 + 𝐵) + 𝐴) + 𝐵) ↔ ((𝐴 + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + 𝐴))) |
| 21 | 16, 20 | mpbid 232 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + 𝐴)) |
| 22 | 3, 3, 4 | addassd 11257 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐴) + 𝐵) = (𝐴 + (𝐴 + 𝐵))) |
| 23 | 3, 4, 3 | addassd 11257 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐴) = (𝐴 + (𝐵 + 𝐴))) |
| 24 | 21, 22, 23 | 3eqtr3d 2778 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐴 + 𝐵)) = (𝐴 + (𝐵 + 𝐴))) |
| 25 | 4, 3 | addcld 11254 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) ∈ ℂ) |
| 26 | addcan 11419 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℂ ∧ (𝐵 + 𝐴) ∈ ℂ) → ((𝐴 + (𝐴 + 𝐵)) = (𝐴 + (𝐵 + 𝐴)) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴))) | |
| 27 | 3, 6, 25, 26 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (𝐴 + 𝐵)) = (𝐴 + (𝐵 + 𝐴)) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
| 28 | 24, 27 | mpbid 232 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 1c1 11130 + caddc 11132 · cmul 11134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 |
| This theorem is referenced by: addcomi 11426 ltaddnegr 11452 add12 11453 add32 11454 add42 11457 subsub23 11487 pncan2 11489 addsub 11493 addsub12 11495 addsubeq4 11497 sub32 11517 pnpcan2 11523 ppncan 11525 sub4 11528 negsubdi2 11542 ltaddsub2 11712 leaddsub2 11714 leltadd 11721 ltaddpos2 11728 addge02 11748 conjmul 11958 recp1lt1 12140 recreclt 12141 avgle1 12481 avgle2 12482 avgle 12483 nn0nnaddcl 12532 xaddcom 13256 fzen 13558 fzshftral 13632 fzo0addelr 13735 flzadd 13843 addmodidr 13938 modadd2mod 13939 nn0ennn 13997 seradd 14062 bernneq2 14248 ccatrn 14607 ccatalpha 14611 revccat 14784 2cshwcom 14834 shftval2 15094 shftval4 15096 crim 15134 absmax 15348 climshft2 15598 summolem3 15730 binom1dif 15849 isumshft 15855 arisum 15876 mertenslem1 15900 bpolydiflem 16070 addcos 16192 demoivreALT 16219 dvdsaddr 16322 sumodd 16407 divalglem4 16415 divalgb 16423 gcdaddm 16544 hashdvds 16794 phiprmpw 16795 pythagtriplem2 16837 prmgaplem7 17077 mulgnndir 19086 cnaddablx 19849 cnaddabl 19850 zaddablx 19853 cncrngOLD 21352 psdmvr 22107 ioo2bl 24732 icopnfcnv 24891 uniioombllem3 25538 fta1glem1 26125 plyremlem 26264 fta1lem 26267 vieta1lem1 26270 vieta1lem2 26271 aaliou3lem2 26303 dvradcnv 26382 pserdv2 26392 reeff1olem 26408 ptolemy 26457 logcnlem4 26606 cxpsqrt 26664 atandm2 26839 atandm4 26841 atanlogsublem 26877 2efiatan 26880 dvatan 26897 birthdaylem2 26914 emcllem2 26959 fsumharmonic 26974 wilthlem1 27030 wilthlem2 27031 basellem8 27050 1sgmprm 27162 perfectlem2 27193 pntibndlem1 27552 pntibndlem2 27554 pntlemd 27557 pntlemc 27558 eucrctshift 30224 cnaddabloOLD 30562 cdj3lem3b 32421 isarchi3 33185 archiabllem2c 33193 cos2h 37635 tan2h 37636 lcmineqlem4 42045 2xp3dxp2ge1d 42254 eldioph2lem1 42783 addcomgi 44480 fz0addcom 47346 epoo 47717 perfectALTVlem2 47736 sbgoldbaltlem2 47794 |
| Copyright terms: Public domain | W3C validator |