![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcom | Structured version Visualization version GIF version |
Description: Addition commutes. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
addcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd 11253 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 1 ∈ ℂ) | |
2 | 1, 1 | addcld 11277 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 + 1) ∈ ℂ) |
3 | simpl 482 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
4 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
5 | 2, 3, 4 | adddid 11282 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 1) · (𝐴 + 𝐵)) = (((1 + 1) · 𝐴) + ((1 + 1) · 𝐵))) |
6 | 3, 4 | addcld 11277 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
7 | 1p1times 11429 | . . . . . . 7 ⊢ ((𝐴 + 𝐵) ∈ ℂ → ((1 + 1) · (𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵))) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 1) · (𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵))) |
9 | 1p1times 11429 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | |
10 | 1p1times 11429 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → ((1 + 1) · 𝐵) = (𝐵 + 𝐵)) | |
11 | 9, 10 | oveqan12d 7449 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((1 + 1) · 𝐴) + ((1 + 1) · 𝐵)) = ((𝐴 + 𝐴) + (𝐵 + 𝐵))) |
12 | 5, 8, 11 | 3eqtr3rd 2783 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐴) + (𝐵 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵))) |
13 | 3, 3 | addcld 11277 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐴) ∈ ℂ) |
14 | 13, 4, 4 | addassd 11280 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐴) + 𝐵) + 𝐵) = ((𝐴 + 𝐴) + (𝐵 + 𝐵))) |
15 | 6, 3, 4 | addassd 11280 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + (𝐴 + 𝐵))) |
16 | 12, 14, 15 | 3eqtr4d 2784 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐴) + 𝐵) + 𝐵) = (((𝐴 + 𝐵) + 𝐴) + 𝐵)) |
17 | 13, 4 | addcld 11277 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐴) + 𝐵) ∈ ℂ) |
18 | 6, 3 | addcld 11277 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐴) ∈ ℂ) |
19 | addcan2 11443 | . . . . 5 ⊢ ((((𝐴 + 𝐴) + 𝐵) ∈ ℂ ∧ ((𝐴 + 𝐵) + 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐴) + 𝐵) + 𝐵) = (((𝐴 + 𝐵) + 𝐴) + 𝐵) ↔ ((𝐴 + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + 𝐴))) | |
20 | 17, 18, 4, 19 | syl3anc 1370 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐴) + 𝐵) + 𝐵) = (((𝐴 + 𝐵) + 𝐴) + 𝐵) ↔ ((𝐴 + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + 𝐴))) |
21 | 16, 20 | mpbid 232 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + 𝐴)) |
22 | 3, 3, 4 | addassd 11280 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐴) + 𝐵) = (𝐴 + (𝐴 + 𝐵))) |
23 | 3, 4, 3 | addassd 11280 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐴) = (𝐴 + (𝐵 + 𝐴))) |
24 | 21, 22, 23 | 3eqtr3d 2782 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐴 + 𝐵)) = (𝐴 + (𝐵 + 𝐴))) |
25 | 4, 3 | addcld 11277 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) ∈ ℂ) |
26 | addcan 11442 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℂ ∧ (𝐵 + 𝐴) ∈ ℂ) → ((𝐴 + (𝐴 + 𝐵)) = (𝐴 + (𝐵 + 𝐴)) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴))) | |
27 | 3, 6, 25, 26 | syl3anc 1370 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (𝐴 + 𝐵)) = (𝐴 + (𝐵 + 𝐴)) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
28 | 24, 27 | mpbid 232 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 1c1 11153 + caddc 11155 · cmul 11157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 |
This theorem is referenced by: addcomi 11449 ltaddnegr 11475 add12 11476 add32 11477 add42 11480 subsub23 11510 pncan2 11512 addsub 11516 addsub12 11518 addsubeq4 11520 sub32 11540 pnpcan2 11546 ppncan 11548 sub4 11551 negsubdi2 11565 ltaddsub2 11735 leaddsub2 11737 leltadd 11744 ltaddpos2 11751 addge02 11771 conjmul 11981 recp1lt1 12163 recreclt 12164 avgle1 12503 avgle2 12504 avgle 12505 nn0nnaddcl 12554 xaddcom 13278 fzen 13577 fzshftral 13651 fzo0addelr 13754 flzadd 13862 addmodidr 13957 modadd2mod 13958 nn0ennn 14016 seradd 14081 bernneq2 14265 ccatrn 14623 ccatalpha 14627 revccat 14800 2cshwcom 14850 shftval2 15110 shftval4 15112 crim 15150 absmax 15364 climshft2 15614 summolem3 15746 binom1dif 15865 isumshft 15871 arisum 15892 mertenslem1 15916 bpolydiflem 16086 addcos 16206 demoivreALT 16233 dvdsaddr 16336 sumodd 16421 divalglem4 16429 divalgb 16437 gcdaddm 16558 hashdvds 16808 phiprmpw 16809 pythagtriplem2 16850 prmgaplem7 17090 mulgnndir 19133 cnaddablx 19900 cnaddabl 19901 zaddablx 19904 cncrngOLD 21419 ioo2bl 24828 icopnfcnv 24986 uniioombllem3 25633 fta1glem1 26221 plyremlem 26360 fta1lem 26363 vieta1lem1 26366 vieta1lem2 26367 aaliou3lem2 26399 dvradcnv 26478 pserdv2 26488 reeff1olem 26504 ptolemy 26552 logcnlem4 26701 cxpsqrt 26759 atandm2 26934 atandm4 26936 atanlogsublem 26972 2efiatan 26975 dvatan 26992 birthdaylem2 27009 emcllem2 27054 fsumharmonic 27069 wilthlem1 27125 wilthlem2 27126 basellem8 27145 1sgmprm 27257 perfectlem2 27288 pntibndlem1 27647 pntibndlem2 27649 pntlemd 27652 pntlemc 27653 eucrctshift 30271 cnaddabloOLD 30609 cdj3lem3b 32468 isarchi3 33176 archiabllem2c 33184 cos2h 37597 tan2h 37598 lcmineqlem4 42013 2xp3dxp2ge1d 42222 eldioph2lem1 42747 addcomgi 44451 fz0addcom 47266 epoo 47627 perfectALTVlem2 47646 sbgoldbaltlem2 47704 |
Copyright terms: Public domain | W3C validator |