MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcom Structured version   Visualization version   GIF version

Theorem addcom 11367
Description: Addition commutes. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
addcom ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Proof of Theorem addcom
StepHypRef Expression
1 1cnd 11176 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 1 ∈ ℂ)
21, 1addcld 11200 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 + 1) ∈ ℂ)
3 simpl 482 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
4 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
52, 3, 4adddid 11205 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 1) · (𝐴 + 𝐵)) = (((1 + 1) · 𝐴) + ((1 + 1) · 𝐵)))
63, 4addcld 11200 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
7 1p1times 11352 . . . . . . 7 ((𝐴 + 𝐵) ∈ ℂ → ((1 + 1) · (𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
86, 7syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 1) · (𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
9 1p1times 11352 . . . . . . 7 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
10 1p1times 11352 . . . . . . 7 (𝐵 ∈ ℂ → ((1 + 1) · 𝐵) = (𝐵 + 𝐵))
119, 10oveqan12d 7409 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((1 + 1) · 𝐴) + ((1 + 1) · 𝐵)) = ((𝐴 + 𝐴) + (𝐵 + 𝐵)))
125, 8, 113eqtr3rd 2774 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐴) + (𝐵 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
133, 3addcld 11200 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐴) ∈ ℂ)
1413, 4, 4addassd 11203 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐴) + 𝐵) + 𝐵) = ((𝐴 + 𝐴) + (𝐵 + 𝐵)))
156, 3, 4addassd 11203 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
1612, 14, 153eqtr4d 2775 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐴) + 𝐵) + 𝐵) = (((𝐴 + 𝐵) + 𝐴) + 𝐵))
1713, 4addcld 11200 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐴) + 𝐵) ∈ ℂ)
186, 3addcld 11200 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐴) ∈ ℂ)
19 addcan2 11366 . . . . 5 ((((𝐴 + 𝐴) + 𝐵) ∈ ℂ ∧ ((𝐴 + 𝐵) + 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐴) + 𝐵) + 𝐵) = (((𝐴 + 𝐵) + 𝐴) + 𝐵) ↔ ((𝐴 + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + 𝐴)))
2017, 18, 4, 19syl3anc 1373 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐴) + 𝐵) + 𝐵) = (((𝐴 + 𝐵) + 𝐴) + 𝐵) ↔ ((𝐴 + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + 𝐴)))
2116, 20mpbid 232 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + 𝐴))
223, 3, 4addassd 11203 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐴) + 𝐵) = (𝐴 + (𝐴 + 𝐵)))
233, 4, 3addassd 11203 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐴) = (𝐴 + (𝐵 + 𝐴)))
2421, 22, 233eqtr3d 2773 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐴 + 𝐵)) = (𝐴 + (𝐵 + 𝐴)))
254, 3addcld 11200 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) ∈ ℂ)
26 addcan 11365 . . 3 ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℂ ∧ (𝐵 + 𝐴) ∈ ℂ) → ((𝐴 + (𝐴 + 𝐵)) = (𝐴 + (𝐵 + 𝐴)) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴)))
273, 6, 25, 26syl3anc 1373 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (𝐴 + 𝐵)) = (𝐴 + (𝐵 + 𝐴)) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴)))
2824, 27mpbid 232 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  (class class class)co 7390  cc 11073  1c1 11076   + caddc 11078   · cmul 11080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220
This theorem is referenced by:  addcomi  11372  ltaddnegr  11398  add12  11399  add32  11400  add42  11403  subsub23  11433  pncan2  11435  addsub  11439  addsub12  11441  addsubeq4  11443  sub32  11463  pnpcan2  11469  ppncan  11471  sub4  11474  negsubdi2  11488  ltaddsub2  11660  leaddsub2  11662  leltadd  11669  ltaddpos2  11676  addge02  11696  conjmul  11906  recp1lt1  12088  recreclt  12089  avgle1  12429  avgle2  12430  avgle  12431  nn0nnaddcl  12480  xaddcom  13207  fzen  13509  fzshftral  13583  fzo0addelr  13687  flzadd  13795  addmodidr  13892  modadd2mod  13893  nn0ennn  13951  seradd  14016  bernneq2  14202  ccatrn  14561  ccatalpha  14565  revccat  14738  2cshwcom  14788  shftval2  15048  shftval4  15050  crim  15088  absmax  15303  climshft2  15555  summolem3  15687  binom1dif  15806  isumshft  15812  arisum  15833  mertenslem1  15857  bpolydiflem  16027  addcos  16149  demoivreALT  16176  dvdsaddr  16280  sumodd  16365  divalglem4  16373  divalgb  16381  gcdaddm  16502  hashdvds  16752  phiprmpw  16753  pythagtriplem2  16795  prmgaplem7  17035  mulgnndir  19042  cnaddablx  19805  cnaddabl  19806  zaddablx  19809  cncrngOLD  21308  psdmvr  22063  ioo2bl  24688  icopnfcnv  24847  uniioombllem3  25493  fta1glem1  26080  plyremlem  26219  fta1lem  26222  vieta1lem1  26225  vieta1lem2  26226  aaliou3lem2  26258  dvradcnv  26337  pserdv2  26347  reeff1olem  26363  ptolemy  26412  logcnlem4  26561  cxpsqrt  26619  atandm2  26794  atandm4  26796  atanlogsublem  26832  2efiatan  26835  dvatan  26852  birthdaylem2  26869  emcllem2  26914  fsumharmonic  26929  wilthlem1  26985  wilthlem2  26986  basellem8  27005  1sgmprm  27117  perfectlem2  27148  pntibndlem1  27507  pntibndlem2  27509  pntlemd  27512  pntlemc  27513  eucrctshift  30179  cnaddabloOLD  30517  cdj3lem3b  32376  isarchi3  33148  archiabllem2c  33156  cos2h  37612  tan2h  37613  lcmineqlem4  42027  eldioph2lem1  42755  addcomgi  44452  fz0addcom  47322  epoo  47708  perfectALTVlem2  47727  sbgoldbaltlem2  47785
  Copyright terms: Public domain W3C validator