| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcom | Structured version Visualization version GIF version | ||
| Description: Addition commutes. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| addcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1cnd 11176 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 1 ∈ ℂ) | |
| 2 | 1, 1 | addcld 11200 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 + 1) ∈ ℂ) |
| 3 | simpl 482 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 4 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 5 | 2, 3, 4 | adddid 11205 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 1) · (𝐴 + 𝐵)) = (((1 + 1) · 𝐴) + ((1 + 1) · 𝐵))) |
| 6 | 3, 4 | addcld 11200 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| 7 | 1p1times 11352 | . . . . . . 7 ⊢ ((𝐴 + 𝐵) ∈ ℂ → ((1 + 1) · (𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵))) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 1) · (𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵))) |
| 9 | 1p1times 11352 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | |
| 10 | 1p1times 11352 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → ((1 + 1) · 𝐵) = (𝐵 + 𝐵)) | |
| 11 | 9, 10 | oveqan12d 7409 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((1 + 1) · 𝐴) + ((1 + 1) · 𝐵)) = ((𝐴 + 𝐴) + (𝐵 + 𝐵))) |
| 12 | 5, 8, 11 | 3eqtr3rd 2774 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐴) + (𝐵 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵))) |
| 13 | 3, 3 | addcld 11200 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐴) ∈ ℂ) |
| 14 | 13, 4, 4 | addassd 11203 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐴) + 𝐵) + 𝐵) = ((𝐴 + 𝐴) + (𝐵 + 𝐵))) |
| 15 | 6, 3, 4 | addassd 11203 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + (𝐴 + 𝐵))) |
| 16 | 12, 14, 15 | 3eqtr4d 2775 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐴) + 𝐵) + 𝐵) = (((𝐴 + 𝐵) + 𝐴) + 𝐵)) |
| 17 | 13, 4 | addcld 11200 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐴) + 𝐵) ∈ ℂ) |
| 18 | 6, 3 | addcld 11200 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐴) ∈ ℂ) |
| 19 | addcan2 11366 | . . . . 5 ⊢ ((((𝐴 + 𝐴) + 𝐵) ∈ ℂ ∧ ((𝐴 + 𝐵) + 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐴) + 𝐵) + 𝐵) = (((𝐴 + 𝐵) + 𝐴) + 𝐵) ↔ ((𝐴 + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + 𝐴))) | |
| 20 | 17, 18, 4, 19 | syl3anc 1373 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐴) + 𝐵) + 𝐵) = (((𝐴 + 𝐵) + 𝐴) + 𝐵) ↔ ((𝐴 + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + 𝐴))) |
| 21 | 16, 20 | mpbid 232 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐴) + 𝐵) = ((𝐴 + 𝐵) + 𝐴)) |
| 22 | 3, 3, 4 | addassd 11203 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐴) + 𝐵) = (𝐴 + (𝐴 + 𝐵))) |
| 23 | 3, 4, 3 | addassd 11203 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐴) = (𝐴 + (𝐵 + 𝐴))) |
| 24 | 21, 22, 23 | 3eqtr3d 2773 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐴 + 𝐵)) = (𝐴 + (𝐵 + 𝐴))) |
| 25 | 4, 3 | addcld 11200 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) ∈ ℂ) |
| 26 | addcan 11365 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℂ ∧ (𝐵 + 𝐴) ∈ ℂ) → ((𝐴 + (𝐴 + 𝐵)) = (𝐴 + (𝐵 + 𝐴)) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴))) | |
| 27 | 3, 6, 25, 26 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (𝐴 + 𝐵)) = (𝐴 + (𝐵 + 𝐴)) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
| 28 | 24, 27 | mpbid 232 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 1c1 11076 + caddc 11078 · cmul 11080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 |
| This theorem is referenced by: addcomi 11372 ltaddnegr 11398 add12 11399 add32 11400 add42 11403 subsub23 11433 pncan2 11435 addsub 11439 addsub12 11441 addsubeq4 11443 sub32 11463 pnpcan2 11469 ppncan 11471 sub4 11474 negsubdi2 11488 ltaddsub2 11660 leaddsub2 11662 leltadd 11669 ltaddpos2 11676 addge02 11696 conjmul 11906 recp1lt1 12088 recreclt 12089 avgle1 12429 avgle2 12430 avgle 12431 nn0nnaddcl 12480 xaddcom 13207 fzen 13509 fzshftral 13583 fzo0addelr 13687 flzadd 13795 addmodidr 13892 modadd2mod 13893 nn0ennn 13951 seradd 14016 bernneq2 14202 ccatrn 14561 ccatalpha 14565 revccat 14738 2cshwcom 14788 shftval2 15048 shftval4 15050 crim 15088 absmax 15303 climshft2 15555 summolem3 15687 binom1dif 15806 isumshft 15812 arisum 15833 mertenslem1 15857 bpolydiflem 16027 addcos 16149 demoivreALT 16176 dvdsaddr 16280 sumodd 16365 divalglem4 16373 divalgb 16381 gcdaddm 16502 hashdvds 16752 phiprmpw 16753 pythagtriplem2 16795 prmgaplem7 17035 mulgnndir 19042 cnaddablx 19805 cnaddabl 19806 zaddablx 19809 cncrngOLD 21308 psdmvr 22063 ioo2bl 24688 icopnfcnv 24847 uniioombllem3 25493 fta1glem1 26080 plyremlem 26219 fta1lem 26222 vieta1lem1 26225 vieta1lem2 26226 aaliou3lem2 26258 dvradcnv 26337 pserdv2 26347 reeff1olem 26363 ptolemy 26412 logcnlem4 26561 cxpsqrt 26619 atandm2 26794 atandm4 26796 atanlogsublem 26832 2efiatan 26835 dvatan 26852 birthdaylem2 26869 emcllem2 26914 fsumharmonic 26929 wilthlem1 26985 wilthlem2 26986 basellem8 27005 1sgmprm 27117 perfectlem2 27148 pntibndlem1 27507 pntibndlem2 27509 pntlemd 27512 pntlemc 27513 eucrctshift 30179 cnaddabloOLD 30517 cdj3lem3b 32376 isarchi3 33148 archiabllem2c 33156 cos2h 37612 tan2h 37613 lcmineqlem4 42027 eldioph2lem1 42755 addcomgi 44452 fz0addcom 47322 epoo 47708 perfectALTVlem2 47727 sbgoldbaltlem2 47785 |
| Copyright terms: Public domain | W3C validator |