MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muladd11 Structured version   Visualization version   GIF version

Theorem muladd11 11422
Description: A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
muladd11 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท (1 + ๐ต)) = ((1 + ๐ด) + (๐ต + (๐ด ยท ๐ต))))

Proof of Theorem muladd11
StepHypRef Expression
1 ax-1cn 11204 . . . 4 1 โˆˆ โ„‚
2 addcl 11228 . . . 4 ((1 โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚) โ†’ (1 + ๐ด) โˆˆ โ„‚)
31, 2mpan 688 . . 3 (๐ด โˆˆ โ„‚ โ†’ (1 + ๐ด) โˆˆ โ„‚)
4 adddi 11235 . . . 4 (((1 + ๐ด) โˆˆ โ„‚ โˆง 1 โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท (1 + ๐ต)) = (((1 + ๐ด) ยท 1) + ((1 + ๐ด) ยท ๐ต)))
51, 4mp3an2 1445 . . 3 (((1 + ๐ด) โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท (1 + ๐ต)) = (((1 + ๐ด) ยท 1) + ((1 + ๐ด) ยท ๐ต)))
63, 5sylan 578 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท (1 + ๐ต)) = (((1 + ๐ด) ยท 1) + ((1 + ๐ด) ยท ๐ต)))
73mulridd 11269 . . . 4 (๐ด โˆˆ โ„‚ โ†’ ((1 + ๐ด) ยท 1) = (1 + ๐ด))
87adantr 479 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท 1) = (1 + ๐ด))
9 adddir 11243 . . . . 5 ((1 โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท ๐ต) = ((1 ยท ๐ต) + (๐ด ยท ๐ต)))
101, 9mp3an1 1444 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท ๐ต) = ((1 ยท ๐ต) + (๐ด ยท ๐ต)))
11 mullid 11251 . . . . . 6 (๐ต โˆˆ โ„‚ โ†’ (1 ยท ๐ต) = ๐ต)
1211adantl 480 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (1 ยท ๐ต) = ๐ต)
1312oveq1d 7441 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 ยท ๐ต) + (๐ด ยท ๐ต)) = (๐ต + (๐ด ยท ๐ต)))
1410, 13eqtrd 2768 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท ๐ต) = (๐ต + (๐ด ยท ๐ต)))
158, 14oveq12d 7444 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (((1 + ๐ด) ยท 1) + ((1 + ๐ด) ยท ๐ต)) = ((1 + ๐ด) + (๐ต + (๐ด ยท ๐ต))))
166, 15eqtrd 2768 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท (1 + ๐ต)) = ((1 + ๐ด) + (๐ต + (๐ด ยท ๐ต))))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 394   = wceq 1533   โˆˆ wcel 2098  (class class class)co 7426  โ„‚cc 11144  1c1 11147   + caddc 11149   ยท cmul 11151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-mulcl 11208  ax-mulcom 11210  ax-mulass 11212  ax-distr 11213  ax-1rid 11216  ax-cnre 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-iota 6505  df-fv 6561  df-ov 7429
This theorem is referenced by:  muladd11r  11465  bernneq  14231
  Copyright terms: Public domain W3C validator