![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > muladd11 | Structured version Visualization version GIF version |
Description: A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.) |
Ref | Expression |
---|---|
muladd11 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10310 | . . . 4 ⊢ 1 ∈ ℂ | |
2 | addcl 10334 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ) | |
3 | 1, 2 | mpan 683 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ) |
4 | adddi 10341 | . . . 4 ⊢ (((1 + 𝐴) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵))) | |
5 | 1, 4 | mp3an2 1579 | . . 3 ⊢ (((1 + 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵))) |
6 | 3, 5 | sylan 577 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵))) |
7 | 3 | mulid1d 10374 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((1 + 𝐴) · 1) = (1 + 𝐴)) |
8 | 7 | adantr 474 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 1) = (1 + 𝐴)) |
9 | adddir 10347 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 𝐵) = ((1 · 𝐵) + (𝐴 · 𝐵))) | |
10 | 1, 9 | mp3an1 1578 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 𝐵) = ((1 · 𝐵) + (𝐴 · 𝐵))) |
11 | mulid2 10355 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵) | |
12 | 11 | adantl 475 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · 𝐵) = 𝐵) |
13 | 12 | oveq1d 6920 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · 𝐵) + (𝐴 · 𝐵)) = (𝐵 + (𝐴 · 𝐵))) |
14 | 10, 13 | eqtrd 2861 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 𝐵) = (𝐵 + (𝐴 · 𝐵))) |
15 | 8, 14 | oveq12d 6923 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵)))) |
16 | 6, 15 | eqtrd 2861 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 (class class class)co 6905 ℂcc 10250 1c1 10253 + caddc 10255 · cmul 10257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-mulcl 10314 ax-mulcom 10316 ax-mulass 10318 ax-distr 10319 ax-1rid 10322 ax-cnre 10325 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-iota 6086 df-fv 6131 df-ov 6908 |
This theorem is referenced by: muladd11r 10568 bernneq 13284 |
Copyright terms: Public domain | W3C validator |