| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2cn | Structured version Visualization version GIF version | ||
| Description: A theorem for complex numbers analogous the second Peano postulate peano2nn 12144. (Contributed by NM, 17-Aug-2005.) |
| Ref | Expression |
|---|---|
| peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11071 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | addcl 11095 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 1c1 11014 + caddc 11016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: nnsscn 12137 xp1d2m1eqxm1d2 12382 zeo 12565 zeo2 12566 zesq 14135 facndiv 14197 faclbnd 14199 faclbnd6 14208 iseralt 15594 bcxmas 15744 trireciplem 15771 fallfacfwd 15945 bpolydiflem 15963 fsumcube 15969 odd2np1 16254 srgbinomlem3 20148 srgbinomlem4 20149 pcoass 24952 dvfsumabs 25957 ply1divex 26070 qaa 26259 aaliou3lem2 26279 abssinper 26458 advlogexp 26592 atantayl2 26876 basellem3 27021 basellem8 27026 lgseisenlem1 27314 lgsquadlem1 27319 pntrsumo1 27504 crctcshwlkn0lem6 29795 clwlkclwwlklem3 29983 fwddifnp1 36230 ltflcei 37668 itg2addnclem3 37733 pell14qrgapw 42993 binomcxplemrat 44467 sumnnodd 45754 dirkertrigeqlem1 46220 dirkertrigeqlem3 46222 dirkertrigeq 46223 fourierswlem 46352 fmtnorec4 47673 lighneallem4b 47733 ackval1 48806 ackval2 48807 |
| Copyright terms: Public domain | W3C validator |