| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2cn | Structured version Visualization version GIF version | ||
| Description: A theorem for complex numbers analogous the second Peano postulate peano2nn 12252. (Contributed by NM, 17-Aug-2005.) |
| Ref | Expression |
|---|---|
| peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11187 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | addcl 11211 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 1c1 11130 + caddc 11132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: nnsscn 12245 xp1d2m1eqxm1d2 12495 zeo 12679 zeo2 12680 zesq 14244 facndiv 14306 faclbnd 14308 faclbnd6 14317 iseralt 15701 bcxmas 15851 trireciplem 15878 fallfacfwd 16052 bpolydiflem 16070 fsumcube 16076 odd2np1 16360 srgbinomlem3 20188 srgbinomlem4 20189 pcoass 24975 dvfsumabs 25981 ply1divex 26094 qaa 26283 aaliou3lem2 26303 abssinper 26482 advlogexp 26616 atantayl2 26900 basellem3 27045 basellem8 27050 lgseisenlem1 27338 lgsquadlem1 27343 pntrsumo1 27528 crctcshwlkn0lem6 29797 clwlkclwwlklem3 29982 fwddifnp1 36183 ltflcei 37632 itg2addnclem3 37697 pell14qrgapw 42899 binomcxplemrat 44374 sumnnodd 45659 dirkertrigeqlem1 46127 dirkertrigeqlem3 46129 dirkertrigeq 46130 fourierswlem 46259 fmtnorec4 47563 lighneallem4b 47623 ackval1 48661 ackval2 48662 |
| Copyright terms: Public domain | W3C validator |