| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2cn | Structured version Visualization version GIF version | ||
| Description: A theorem for complex numbers analogous the second Peano postulate peano2nn 12134. (Contributed by NM, 17-Aug-2005.) |
| Ref | Expression |
|---|---|
| peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11061 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | addcl 11085 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 1c1 11004 + caddc 11006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: nnsscn 12127 xp1d2m1eqxm1d2 12372 zeo 12556 zeo2 12557 zesq 14130 facndiv 14192 faclbnd 14194 faclbnd6 14203 iseralt 15589 bcxmas 15739 trireciplem 15766 fallfacfwd 15940 bpolydiflem 15958 fsumcube 15964 odd2np1 16249 srgbinomlem3 20144 srgbinomlem4 20145 pcoass 24949 dvfsumabs 25954 ply1divex 26067 qaa 26256 aaliou3lem2 26276 abssinper 26455 advlogexp 26589 atantayl2 26873 basellem3 27018 basellem8 27023 lgseisenlem1 27311 lgsquadlem1 27316 pntrsumo1 27501 crctcshwlkn0lem6 29791 clwlkclwwlklem3 29976 fwddifnp1 36198 ltflcei 37647 itg2addnclem3 37712 pell14qrgapw 42908 binomcxplemrat 44382 sumnnodd 45669 dirkertrigeqlem1 46135 dirkertrigeqlem3 46137 dirkertrigeq 46138 fourierswlem 46267 fmtnorec4 47579 lighneallem4b 47639 ackval1 48712 ackval2 48713 |
| Copyright terms: Public domain | W3C validator |