![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano2cn | Structured version Visualization version GIF version |
Description: A theorem for complex numbers analogous the second Peano postulate peano2nn 12305. (Contributed by NM, 17-Aug-2005.) |
Ref | Expression |
---|---|
peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11242 | . 2 ⊢ 1 ∈ ℂ | |
2 | addcl 11266 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
3 | 1, 2 | mpan2 690 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: nnsscn 12298 xp1d2m1eqxm1d2 12547 zeo 12729 zeo2 12730 zesq 14275 facndiv 14337 faclbnd 14339 faclbnd6 14348 iseralt 15733 bcxmas 15883 trireciplem 15910 fallfacfwd 16084 bpolydiflem 16102 fsumcube 16108 odd2np1 16389 srgbinomlem3 20255 srgbinomlem4 20256 pcoass 25076 dvfsumabs 26083 ply1divex 26196 qaa 26383 aaliou3lem2 26403 abssinper 26581 advlogexp 26715 atantayl2 26999 basellem3 27144 basellem8 27149 lgseisenlem1 27437 lgsquadlem1 27442 pntrsumo1 27627 crctcshwlkn0lem6 29848 clwlkclwwlklem3 30033 fwddifnp1 36129 ltflcei 37568 itg2addnclem3 37633 pell14qrgapw 42832 binomcxplemrat 44319 sumnnodd 45551 dirkertrigeqlem1 46019 dirkertrigeqlem3 46021 dirkertrigeq 46022 fourierswlem 46151 fmtnorec4 47423 lighneallem4b 47483 ackval1 48415 ackval2 48416 |
Copyright terms: Public domain | W3C validator |