| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2cn | Structured version Visualization version GIF version | ||
| Description: A theorem for complex numbers analogous the second Peano postulate peano2nn 12198. (Contributed by NM, 17-Aug-2005.) |
| Ref | Expression |
|---|---|
| peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11126 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | addcl 11150 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 1c1 11069 + caddc 11071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: nnsscn 12191 xp1d2m1eqxm1d2 12436 zeo 12620 zeo2 12621 zesq 14191 facndiv 14253 faclbnd 14255 faclbnd6 14264 iseralt 15651 bcxmas 15801 trireciplem 15828 fallfacfwd 16002 bpolydiflem 16020 fsumcube 16026 odd2np1 16311 srgbinomlem3 20137 srgbinomlem4 20138 pcoass 24924 dvfsumabs 25929 ply1divex 26042 qaa 26231 aaliou3lem2 26251 abssinper 26430 advlogexp 26564 atantayl2 26848 basellem3 26993 basellem8 26998 lgseisenlem1 27286 lgsquadlem1 27291 pntrsumo1 27476 crctcshwlkn0lem6 29745 clwlkclwwlklem3 29930 fwddifnp1 36153 ltflcei 37602 itg2addnclem3 37667 pell14qrgapw 42864 binomcxplemrat 44339 sumnnodd 45628 dirkertrigeqlem1 46096 dirkertrigeqlem3 46098 dirkertrigeq 46099 fourierswlem 46228 fmtnorec4 47550 lighneallem4b 47610 ackval1 48670 ackval2 48671 |
| Copyright terms: Public domain | W3C validator |