Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > peano2cn | Structured version Visualization version GIF version |
Description: A theorem for complex numbers analogous the second Peano postulate peano2nn 11968. (Contributed by NM, 17-Aug-2005.) |
Ref | Expression |
---|---|
peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10913 | . 2 ⊢ 1 ∈ ℂ | |
2 | addcl 10937 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
3 | 1, 2 | mpan2 687 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7268 ℂcc 10853 1c1 10856 + caddc 10858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-1cn 10913 ax-addcl 10915 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: nnsscn 11961 xp1d2m1eqxm1d2 12210 nneo 12387 zeo 12389 zeo2 12390 zesq 13922 facndiv 13983 faclbnd 13985 faclbnd6 13994 iseralt 15377 bcxmas 15528 trireciplem 15555 fallfacfwd 15727 bpolydiflem 15745 fsumcube 15751 odd2np1 16031 srgbinomlem3 19759 srgbinomlem4 19760 pcoass 24168 dvfsumabs 25168 ply1divex 25282 qaa 25464 aaliou3lem2 25484 abssinper 25658 advlogexp 25791 atantayl2 26069 basellem3 26213 basellem8 26218 lgseisenlem1 26504 lgsquadlem1 26509 pntrsumo1 26694 crctcshwlkn0lem6 28159 clwlkclwwlklem3 28344 fwddifnp1 34446 ltflcei 35744 itg2addnclem3 35809 pell14qrgapw 40678 binomcxplemrat 41921 sumnnodd 43125 dirkertrigeqlem1 43593 dirkertrigeqlem3 43595 dirkertrigeq 43596 fourierswlem 43725 fmtnorec4 44953 lighneallem4b 45013 ackval1 45979 ackval2 45980 |
Copyright terms: Public domain | W3C validator |