Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > peano2cn | Structured version Visualization version GIF version |
Description: A theorem for complex numbers analogous the second Peano postulate peano2nn 11842. (Contributed by NM, 17-Aug-2005.) |
Ref | Expression |
---|---|
peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10787 | . 2 ⊢ 1 ∈ ℂ | |
2 | addcl 10811 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 (class class class)co 7213 ℂcc 10727 1c1 10730 + caddc 10732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-1cn 10787 ax-addcl 10789 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: nnsscn 11835 xp1d2m1eqxm1d2 12084 nneo 12261 zeo 12263 zeo2 12264 zesq 13793 facndiv 13854 faclbnd 13856 faclbnd6 13865 iseralt 15248 bcxmas 15399 trireciplem 15426 fallfacfwd 15598 bpolydiflem 15616 fsumcube 15622 odd2np1 15902 srgbinomlem3 19557 srgbinomlem4 19558 pcoass 23921 dvfsumabs 24920 ply1divex 25034 qaa 25216 aaliou3lem2 25236 abssinper 25410 advlogexp 25543 atantayl2 25821 basellem3 25965 basellem8 25970 lgseisenlem1 26256 lgsquadlem1 26261 pntrsumo1 26446 crctcshwlkn0lem6 27899 clwlkclwwlklem3 28084 fwddifnp1 34204 ltflcei 35502 itg2addnclem3 35567 pell14qrgapw 40401 binomcxplemrat 41641 sumnnodd 42846 dirkertrigeqlem1 43314 dirkertrigeqlem3 43316 dirkertrigeq 43317 fourierswlem 43446 fmtnorec4 44674 lighneallem4b 44734 ackval1 45700 ackval2 45701 |
Copyright terms: Public domain | W3C validator |