| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2cn | Structured version Visualization version GIF version | ||
| Description: A theorem for complex numbers analogous the second Peano postulate peano2nn 12158. (Contributed by NM, 17-Aug-2005.) |
| Ref | Expression |
|---|---|
| peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11086 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | addcl 11110 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 1c1 11029 + caddc 11031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: nnsscn 12151 xp1d2m1eqxm1d2 12396 zeo 12580 zeo2 12581 zesq 14151 facndiv 14213 faclbnd 14215 faclbnd6 14224 iseralt 15610 bcxmas 15760 trireciplem 15787 fallfacfwd 15961 bpolydiflem 15979 fsumcube 15985 odd2np1 16270 srgbinomlem3 20131 srgbinomlem4 20132 pcoass 24940 dvfsumabs 25945 ply1divex 26058 qaa 26247 aaliou3lem2 26267 abssinper 26446 advlogexp 26580 atantayl2 26864 basellem3 27009 basellem8 27014 lgseisenlem1 27302 lgsquadlem1 27307 pntrsumo1 27492 crctcshwlkn0lem6 29778 clwlkclwwlklem3 29963 fwddifnp1 36138 ltflcei 37587 itg2addnclem3 37652 pell14qrgapw 42849 binomcxplemrat 44323 sumnnodd 45612 dirkertrigeqlem1 46080 dirkertrigeqlem3 46082 dirkertrigeq 46083 fourierswlem 46212 fmtnorec4 47534 lighneallem4b 47594 ackval1 48667 ackval2 48668 |
| Copyright terms: Public domain | W3C validator |