![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano2cn | Structured version Visualization version GIF version |
Description: A theorem for complex numbers analogous the second Peano postulate peano2nn 12275. (Contributed by NM, 17-Aug-2005.) |
Ref | Expression |
---|---|
peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11210 | . 2 ⊢ 1 ∈ ℂ | |
2 | addcl 11234 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 1c1 11153 + caddc 11155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-1cn 11210 ax-addcl 11212 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: nnsscn 12268 xp1d2m1eqxm1d2 12517 zeo 12701 zeo2 12702 zesq 14261 facndiv 14323 faclbnd 14325 faclbnd6 14334 iseralt 15717 bcxmas 15867 trireciplem 15894 fallfacfwd 16068 bpolydiflem 16086 fsumcube 16092 odd2np1 16374 srgbinomlem3 20245 srgbinomlem4 20246 pcoass 25070 dvfsumabs 26077 ply1divex 26190 qaa 26379 aaliou3lem2 26399 abssinper 26577 advlogexp 26711 atantayl2 26995 basellem3 27140 basellem8 27145 lgseisenlem1 27433 lgsquadlem1 27438 pntrsumo1 27623 crctcshwlkn0lem6 29844 clwlkclwwlklem3 30029 fwddifnp1 36146 ltflcei 37594 itg2addnclem3 37659 pell14qrgapw 42863 binomcxplemrat 44345 sumnnodd 45585 dirkertrigeqlem1 46053 dirkertrigeqlem3 46055 dirkertrigeq 46056 fourierswlem 46185 fmtnorec4 47473 lighneallem4b 47533 ackval1 48530 ackval2 48531 |
Copyright terms: Public domain | W3C validator |