| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2cn | Structured version Visualization version GIF version | ||
| Description: A theorem for complex numbers analogous the second Peano postulate peano2nn 12205. (Contributed by NM, 17-Aug-2005.) |
| Ref | Expression |
|---|---|
| peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11133 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | addcl 11157 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 1c1 11076 + caddc 11078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: nnsscn 12198 xp1d2m1eqxm1d2 12443 zeo 12627 zeo2 12628 zesq 14198 facndiv 14260 faclbnd 14262 faclbnd6 14271 iseralt 15658 bcxmas 15808 trireciplem 15835 fallfacfwd 16009 bpolydiflem 16027 fsumcube 16033 odd2np1 16318 srgbinomlem3 20144 srgbinomlem4 20145 pcoass 24931 dvfsumabs 25936 ply1divex 26049 qaa 26238 aaliou3lem2 26258 abssinper 26437 advlogexp 26571 atantayl2 26855 basellem3 27000 basellem8 27005 lgseisenlem1 27293 lgsquadlem1 27298 pntrsumo1 27483 crctcshwlkn0lem6 29752 clwlkclwwlklem3 29937 fwddifnp1 36160 ltflcei 37609 itg2addnclem3 37674 pell14qrgapw 42871 binomcxplemrat 44346 sumnnodd 45635 dirkertrigeqlem1 46103 dirkertrigeqlem3 46105 dirkertrigeq 46106 fourierswlem 46235 fmtnorec4 47554 lighneallem4b 47614 ackval1 48674 ackval2 48675 |
| Copyright terms: Public domain | W3C validator |