![]() |
Metamath
Proof Explorer Theorem List (p. 114 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mulassi 11301 | Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) | ||
Theorem | adddii 11302 | Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) | ||
Theorem | adddiri 11303 | Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)) | ||
Theorem | recni 11304 | A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 ∈ ℂ | ||
Theorem | readdcli 11305 | Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 + 𝐵) ∈ ℝ | ||
Theorem | remulcli 11306 | Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℝ | ||
Theorem | mulridd 11307 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 1) = 𝐴) | ||
Theorem | mullidd 11308 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (1 · 𝐴) = 𝐴) | ||
Theorem | addcld 11309 | Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) | ||
Theorem | mulcld 11310 | Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℂ) | ||
Theorem | mulcomd 11311 | Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
Theorem | addassd 11312 | Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
Theorem | mulassd 11313 | Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
Theorem | adddid 11314 | Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
Theorem | adddird 11315 | Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | ||
Theorem | adddirp1d 11316 | Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) | ||
Theorem | joinlmuladdmuld 11317 | Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) | ||
Theorem | recnd 11318 | Deduction from real number to complex number. (Contributed by NM, 26-Oct-1999.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
Theorem | readdcld 11319 | Closure law for addition of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) | ||
Theorem | remulcld 11320 | Closure law for multiplication of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) | ||
Syntax | cpnf 11321 | Plus infinity. |
class +∞ | ||
Syntax | cmnf 11322 | Minus infinity. |
class -∞ | ||
Syntax | cxr 11323 | The set of extended reals (includes plus and minus infinity). |
class ℝ* | ||
Syntax | clt 11324 | 'Less than' predicate (extended to include the extended reals). |
class < | ||
Syntax | cle 11325 | Extend wff notation to include the 'less than or equal to' relation. |
class ≤ | ||
Definition | df-pnf 11326 |
Define plus infinity. Note that the definition is arbitrary, requiring
only that +∞ be a set not in ℝ and different from -∞
(df-mnf 11327). We use 𝒫 ∪ ℂ to make it independent of the
construction of ℂ, and Cantor's Theorem will
show that it is
different from any member of ℂ and therefore
ℝ. See pnfnre 11331,
mnfnre 11333, and pnfnemnf 11345.
A simpler possibility is to define +∞ as ℂ and -∞ as {ℂ}, but that approach requires the Axiom of Regularity to show that +∞ and -∞ are different from each other and from all members of ℝ. (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.) |
⊢ +∞ = 𝒫 ∪ ℂ | ||
Definition | df-mnf 11327 | Define minus infinity as the power set of plus infinity. Note that the definition is arbitrary, requiring only that -∞ be a set not in ℝ and different from +∞ (see mnfnre 11333 and pnfnemnf 11345). (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.) |
⊢ -∞ = 𝒫 +∞ | ||
Definition | df-xr 11328 | Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.) |
⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | ||
Definition | df-ltxr 11329* | Define 'less than' on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. Note that in our postulates for complex numbers, <ℝ is primitive and not necessarily a relation on ℝ. (Contributed by NM, 13-Oct-2005.) |
⊢ < = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))) | ||
Definition | df-le 11330 | Define 'less than or equal to' on the extended real subset of complex numbers. Theorem leloe 11376 relates it to 'less than' for reals. (Contributed by NM, 13-Oct-2005.) |
⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | ||
Theorem | pnfnre 11331 | Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
⊢ +∞ ∉ ℝ | ||
Theorem | pnfnre2 11332 | Plus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ ¬ +∞ ∈ ℝ | ||
Theorem | mnfnre 11333 | Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
⊢ -∞ ∉ ℝ | ||
Theorem | ressxr 11334 | The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.) |
⊢ ℝ ⊆ ℝ* | ||
Theorem | rexpssxrxp 11335 | The Cartesian product of standard reals are a subset of the Cartesian product of extended reals. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | ||
Theorem | rexr 11336 | A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | ||
Theorem | 0xr 11337 | Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
⊢ 0 ∈ ℝ* | ||
Theorem | renepnf 11338 | No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | ||
Theorem | renemnf 11339 | No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | ||
Theorem | rexrd 11340 | A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ*) | ||
Theorem | renepnfd 11341 | No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≠ +∞) | ||
Theorem | renemnfd 11342 | No real equals minus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≠ -∞) | ||
Theorem | pnfex 11343 | Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018.) (Revised by Steven Nguyen, 7-Dec-2022.) |
⊢ +∞ ∈ V | ||
Theorem | pnfxr 11344 | Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
⊢ +∞ ∈ ℝ* | ||
Theorem | pnfnemnf 11345 | Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
⊢ +∞ ≠ -∞ | ||
Theorem | mnfnepnf 11346 | Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -∞ ≠ +∞ | ||
Theorem | mnfxr 11347 | Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ -∞ ∈ ℝ* | ||
Theorem | rexri 11348 | A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 ∈ ℝ* | ||
Theorem | 1xr 11349 | 1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ 1 ∈ ℝ* | ||
Theorem | renfdisj 11350 | The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ (ℝ ∩ {+∞, -∞}) = ∅ | ||
Theorem | ltrelxr 11351 | "Less than" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) |
⊢ < ⊆ (ℝ* × ℝ*) | ||
Theorem | ltrel 11352 | "Less than" is a relation. (Contributed by NM, 14-Oct-2005.) |
⊢ Rel < | ||
Theorem | lerelxr 11353 | "Less than or equal to" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) |
⊢ ≤ ⊆ (ℝ* × ℝ*) | ||
Theorem | lerel 11354 | "Less than or equal to" is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ Rel ≤ | ||
Theorem | xrlenlt 11355 | "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by NM, 14-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | ||
Theorem | xrlenltd 11356 | "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | ||
Theorem | xrltnle 11357 | "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | ||
Theorem | xrnltled 11358 | "Not less than" implies "less than or equal to". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → ¬ 𝐵 < 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
Theorem | ssxr 11359 | The three (non-exclusive) possibilities implied by a subset of extended reals. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴)) | ||
Theorem | ltxrlt 11360 | The standard less-than <ℝ and the extended real less-than < are identical when restricted to the non-extended reals ℝ. (Contributed by NM, 13-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 𝐴 <ℝ 𝐵)) | ||
Theorem | axlttri 11361 | Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-lttri 11258 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | ||
Theorem | axlttrn 11362 | Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. This restates ax-pre-lttrn 11259 with ordering on the extended reals. New proofs should use lttr 11366 instead for naming consistency. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | ||
Theorem | axltadd 11363 | Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-ltadd 11260 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵))) | ||
Theorem | axmulgt0 11364 | The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-mulgt0 11261 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))) | ||
Theorem | axsup 11365* | A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-sup 11262 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
Theorem | lttr 11366 | Alias for axlttrn 11362, for naming consistency with lttri 11416. New proofs should generally use this instead of ax-pre-lttrn 11259. (Contributed by NM, 10-Mar-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | ||
Theorem | mulgt0 11367 | The product of two positive numbers is positive. (Contributed by NM, 10-Mar-2008.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) | ||
Theorem | lenlt 11368 | 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | ||
Theorem | ltnle 11369 | 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | ||
Theorem | ltso 11370 | 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.) |
⊢ < Or ℝ | ||
Theorem | gtso 11371 | 'Greater than' is a strict ordering. (Contributed by JJ, 11-Oct-2018.) |
⊢ ◡ < Or ℝ | ||
Theorem | lttri2 11372 | Consequence of trichotomy. (Contributed by NM, 9-Oct-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | ||
Theorem | lttri3 11373 | Trichotomy law for 'less than'. (Contributed by NM, 5-May-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | ||
Theorem | lttri4 11374 | Trichotomy law for 'less than'. (Contributed by NM, 20-Sep-2007.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | ||
Theorem | letri3 11375 | Trichotomy law. (Contributed by NM, 14-May-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | ||
Theorem | leloe 11376 | 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by NM, 13-May-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | ||
Theorem | eqlelt 11377 | Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵))) | ||
Theorem | ltle 11378 | 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | ||
Theorem | leltne 11379 | 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by NM, 27-Jul-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴)) | ||
Theorem | lelttr 11380 | Transitive law. (Contributed by NM, 23-May-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | ||
Theorem | leltletr 11381 | Transitive law, weaker form of lelttr 11380. (Contributed by AV, 14-Oct-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 ≤ 𝐶)) | ||
Theorem | ltletr 11382 | Transitive law. (Contributed by NM, 25-Aug-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | ||
Theorem | ltleletr 11383 | Transitive law, weaker form of ltletr 11382. (Contributed by AV, 14-Oct-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | ||
Theorem | letr 11384 | Transitive law. (Contributed by NM, 12-Nov-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | ||
Theorem | ltnr 11385 | 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.) |
⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | ||
Theorem | leid 11386 | 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | ||
Theorem | ltne 11387 | 'Less than' implies not equal. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | ||
Theorem | ltnsym 11388 | 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | ||
Theorem | ltnsym2 11389 | 'Less than' is antisymmetric and irreflexive. (Contributed by NM, 13-Aug-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (𝐴 < 𝐵 ∧ 𝐵 < 𝐴)) | ||
Theorem | letric 11390 | Trichotomy law. (Contributed by NM, 18-Aug-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | ||
Theorem | ltlen 11391 | 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) | ||
Theorem | eqle 11392 | Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) | ||
Theorem | eqled 11393 | Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
Theorem | ltadd2 11394 | Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) | ||
Theorem | ne0gt0 11395 | A nonzero nonnegative number is positive. (Contributed by NM, 20-Nov-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≠ 0 ↔ 0 < 𝐴)) | ||
Theorem | lecasei 11396 | Ordering elimination by cases. (Contributed by NM, 6-Jul-2007.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝜓) & ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | lelttric 11397 | Trichotomy law. (Contributed by NM, 4-Apr-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) | ||
Theorem | ltlecasei 11398 | Ordering elimination by cases. (Contributed by NM, 1-Jul-2007.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝜓) & ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | ltnri 11399 | 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ ¬ 𝐴 < 𝐴 | ||
Theorem | eqlei 11400 | Equality implies 'less than or equal to'. (Contributed by NM, 23-May-1999.) (Revised by Alexander van der Vekens, 20-Mar-2018.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (𝐴 = 𝐵 → 𝐴 ≤ 𝐵) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |