| Metamath
Proof Explorer Theorem List (p. 114 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lelttri 11301 | 'Less than or equal to', 'less than' transitive law. (Contributed by NM, 14-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) | ||
| Theorem | ltletri 11302 | 'Less than', 'less than or equal to' transitive law. (Contributed by NM, 14-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶) | ||
| Theorem | letri 11303 | 'Less than or equal to' is transitive. (Contributed by NM, 14-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶) | ||
| Theorem | le2tri3i 11304 | Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴)) | ||
| Theorem | ltadd2i 11305 | Addition to both sides of 'less than'. (Contributed by NM, 21-Jan-1997.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)) | ||
| Theorem | mulgt0i 11306 | The product of two positive numbers is positive. (Contributed by NM, 16-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)) | ||
| Theorem | mulgt0ii 11307 | The product of two positive numbers is positive. (Contributed by NM, 18-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 < 𝐴 & ⊢ 0 < 𝐵 ⇒ ⊢ 0 < (𝐴 · 𝐵) | ||
| Theorem | ltnrd 11308 | 'Less than' is irreflexive. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ¬ 𝐴 < 𝐴) | ||
| Theorem | gtned 11309 | 'Less than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≠ 𝐴) | ||
| Theorem | ltned 11310 | 'Greater than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
| Theorem | ne0gt0d 11311 | A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → 0 < 𝐴) | ||
| Theorem | lttrid 11312 | Ordering on reals satisfies strict trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | ||
| Theorem | lttri2d 11313 | Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | ||
| Theorem | lttri3d 11314 | Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | ||
| Theorem | lttri4d 11315 | Trichotomy law for 'less than'. (Contributed by NM, 20-Sep-2007.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | ||
| Theorem | letri3d 11316 | Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | ||
| Theorem | leloed 11317 | 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | eqleltd 11318 | Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵))) | ||
| Theorem | ltlend 11319 | 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) | ||
| Theorem | lenltd 11320 | 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | ||
| Theorem | ltnled 11321 | 'Less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | ||
| Theorem | ltled 11322 | 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | ltnsymd 11323 | 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | ||
| Theorem | nltled 11324 | 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ¬ 𝐵 < 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | lensymd 11325 | 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | ||
| Theorem | letrid 11326 | Trichotomy law for 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | ||
| Theorem | leltned 11327 | 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴)) | ||
| Theorem | leneltd 11328 | 'Less than or equal to' and 'not equals' implies 'less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 < 𝐵) | ||
| Theorem | mulgt0d 11329 | The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) | ||
| Theorem | ltadd2d 11330 | Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) | ||
| Theorem | letrd 11331 | Transitive law deduction for 'less than or equal to'. (Contributed by NM, 20-May-2005.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐶) | ||
| Theorem | lelttrd 11332 | Transitive law deduction for 'less than or equal to', 'less than'. (Contributed by NM, 8-Jan-2006.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
| Theorem | ltadd2dd 11333 | Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) | ||
| Theorem | ltletrd 11334 | Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
| Theorem | lttrd 11335 | Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
| Theorem | lelttrdi 11336 | If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018.) |
| ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) | ||
| Theorem | dedekind 11337* | The Dedekind cut theorem. This theorem, which may be used to replace ax-pre-sup 11146 with appropriate adjustments, states that, if 𝐴 completely preceeds 𝐵, then there is some number separating the two of them. (Contributed by Scott Fenton, 13-Jun-2013.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) | ||
| Theorem | dedekindle 11338* | The Dedekind cut theorem, with the hypothesis weakened to only require non-strict less than. (Contributed by Scott Fenton, 2-Jul-2013.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) | ||
| Theorem | mul12 11339 | Commutative/associative law for multiplication. (Contributed by NM, 30-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))) | ||
| Theorem | mul32 11340 | Commutative/associative law. (Contributed by NM, 8-Oct-1999.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) | ||
| Theorem | mul31 11341 | Commutative/associative law. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴)) | ||
| Theorem | mul4 11342 | Rearrangement of 4 factors. (Contributed by NM, 8-Oct-1999.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) | ||
| Theorem | mul4r 11343 | Rearrangement of 4 factors: swap the right factors in the factors of a product of two products. (Contributed by AV, 4-Mar-2023.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐷) · (𝐶 · 𝐵))) | ||
| Theorem | muladd11 11344 | A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵)))) | ||
| Theorem | 1p1times 11345 | Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | ||
| Theorem | peano2cn 11346 | A theorem for complex numbers analogous the second Peano postulate peano2nn 12198. (Contributed by NM, 17-Aug-2005.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) | ||
| Theorem | peano2re 11347 | A theorem for reals analogous the second Peano postulate peano2nn 12198. (Contributed by NM, 5-Jul-2005.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | ||
| Theorem | readdcan 11348 | Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | 00id 11349 | 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ (0 + 0) = 0 | ||
| Theorem | mul02lem1 11350 | Lemma for mul02 11352. If any real does not produce 0 when multiplied by 0, then any complex is equal to double itself. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → 𝐵 = (𝐵 + 𝐵)) | ||
| Theorem | mul02lem2 11351 | Lemma for mul02 11352. Zero times a real is zero. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℝ → (0 · 𝐴) = 0) | ||
| Theorem | mul02 11352 | Multiplication by 0. Theorem I.6 of [Apostol] p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | ||
| Theorem | mul01 11353 | Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 15-May-1999.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | ||
| Theorem | addrid 11354 | 0 is an additive identity. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | ||
| Theorem | cnegex 11355* | Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) | ||
| Theorem | cnegex2 11356* | Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) | ||
| Theorem | addlid 11357 | 0 is a left identity for addition. This used to be one of our complex number axioms, until it was discovered that it was dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | ||
| Theorem | addcan 11358 | Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | addcan2 11359 | Cancellation law for addition. (Contributed by NM, 30-Jul-2004.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | addcom 11360 | Addition commutes. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | addridi 11361 | 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 + 0) = 𝐴 | ||
| Theorem | addlidi 11362 | 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (0 + 𝐴) = 𝐴 | ||
| Theorem | mul02i 11363 | Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (0 · 𝐴) = 0 | ||
| Theorem | mul01i 11364 | Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · 0) = 0 | ||
| Theorem | addcomi 11365 | Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) | ||
| Theorem | addcomli 11366 | Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 + 𝐵) = 𝐶 ⇒ ⊢ (𝐵 + 𝐴) = 𝐶 | ||
| Theorem | addcani 11367 | Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 27-Oct-1999.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶) | ||
| Theorem | addcan2i 11368 | Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 14-May-2003.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵) | ||
| Theorem | mul12i 11369 | Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)) | ||
| Theorem | mul32i 11370 | Commutative/associative law that swaps the last two factors in a triple product. (Contributed by NM, 11-May-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵) | ||
| Theorem | mul4i 11371 | Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)) | ||
| Theorem | mul02d 11372 | Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (0 · 𝐴) = 0) | ||
| Theorem | mul01d 11373 | Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 0) = 0) | ||
| Theorem | addridd 11374 | 0 is an additive identity. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + 0) = 𝐴) | ||
| Theorem | addlidd 11375 | 0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (0 + 𝐴) = 𝐴) | ||
| Theorem | addcomd 11376 | Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | addcand 11377 | Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | addcan2d 11378 | Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | addcanad 11379 | Cancelling a term on the left-hand side of a sum in an equality. Consequence of addcand 11377. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐴 + 𝐶)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐶) | ||
| Theorem | addcan2ad 11380 | Cancelling a term on the right-hand side of a sum in an equality. Consequence of addcan2d 11378. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | addneintrd 11381 | Introducing a term on the left-hand side of a sum in a negated equality. Contrapositive of addcanad 11379. Consequence of addcand 11377. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ≠ (𝐴 + 𝐶)) | ||
| Theorem | addneintr2d 11382 | Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad 11380. Consequence of addcan2d 11378. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 + 𝐶) ≠ (𝐵 + 𝐶)) | ||
| Theorem | mul12d 11383 | Commutative/associative law that swaps the first two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))) | ||
| Theorem | mul32d 11384 | Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) | ||
| Theorem | mul31d 11385 | Commutative/associative law. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴)) | ||
| Theorem | mul4d 11386 | Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) | ||
| Theorem | muladd11r 11387 | A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1)) | ||
| Theorem | comraddd 11388 | Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) | ||
| Theorem | comraddi 11389 | Commute RHS addition. See addcomli 11366 to commute addition on LHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐴 = (𝐵 + 𝐶) ⇒ ⊢ 𝐴 = (𝐶 + 𝐵) | ||
| Theorem | ltaddneg 11390 | Adding a negative number to another number decreases it. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐵 + 𝐴) < 𝐵)) | ||
| Theorem | ltaddnegr 11391 | Adding a negative number to another number decreases it. (Contributed by AV, 19-Mar-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐴 + 𝐵) < 𝐵)) | ||
| Theorem | add12 11392 | Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 11-May-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))) | ||
| Theorem | add32 11393 | Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 13-Nov-1999.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) | ||
| Theorem | add32r 11394 | Commutative/associative law that swaps the last two terms in a triple sum, rearranging the parentheses. (Contributed by Paul Chapman, 18-May-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = ((𝐴 + 𝐶) + 𝐵)) | ||
| Theorem | add4 11395 | Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) | ||
| Theorem | add42 11396 | Rearrangement of 4 terms in a sum. (Contributed by NM, 12-May-2005.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))) | ||
| Theorem | add12i 11397 | Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 21-Jan-1997.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)) | ||
| Theorem | add32i 11398 | Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 21-Jan-1997.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵) | ||
| Theorem | add4i 11399 | Rearrangement of 4 terms in a sum. (Contributed by NM, 9-May-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)) | ||
| Theorem | add42i 11400 | Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |