| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ecoptocl | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| 2ecoptocl.1 | ⊢ 𝑆 = ((𝐶 × 𝐷) / 𝑅) |
| 2ecoptocl.2 | ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
| 2ecoptocl.3 | ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) |
| 2ecoptocl.4 | ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) |
| Ref | Expression |
|---|---|
| 2ecoptocl | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ecoptocl.1 | . . 3 ⊢ 𝑆 = ((𝐶 × 𝐷) / 𝑅) | |
| 2 | 2ecoptocl.3 | . . . 4 ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | imbi2d 340 | . . 3 ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → ((𝐴 ∈ 𝑆 → 𝜓) ↔ (𝐴 ∈ 𝑆 → 𝜒))) |
| 4 | 2ecoptocl.2 | . . . . . 6 ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | imbi2d 340 | . . . . 5 ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜑) ↔ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜓))) |
| 6 | 2ecoptocl.4 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) | |
| 7 | 6 | ex 412 | . . . . 5 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜑)) |
| 8 | 1, 5, 7 | ecoptocl 8819 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜓)) |
| 9 | 8 | com12 32 | . . 3 ⊢ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → (𝐴 ∈ 𝑆 → 𝜓)) |
| 10 | 1, 3, 9 | ecoptocl 8819 | . 2 ⊢ (𝐵 ∈ 𝑆 → (𝐴 ∈ 𝑆 → 𝜒)) |
| 11 | 10 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 × cxp 5652 [cec 8715 / cqs 8716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ec 8719 df-qs 8723 |
| This theorem is referenced by: 3ecoptocl 8821 ecovcom 8835 addclsr 11095 mulclsr 11096 ltsosr 11106 mulgt0sr 11117 |
| Copyright terms: Public domain | W3C validator |