MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclsr Structured version   Visualization version   GIF version

Theorem addclsr 10507
Description: Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addclsr ((𝐴R𝐵R) → (𝐴 +R 𝐵) ∈ R)

Proof of Theorem addclsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 10480 . . 3 R = ((P × P) / ~R )
2 oveq1 7165 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 +R [⟨𝑧, 𝑤⟩] ~R ))
32eleq1d 2899 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 +R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R )))
4 oveq2 7166 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 +R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 +R 𝐵))
54eleq1d 2899 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 +R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 +R 𝐵) ∈ ((P × P) / ~R )))
6 addsrpr 10499 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R )
7 addclpr 10442 . . . . . . 7 ((𝑥P𝑧P) → (𝑥 +P 𝑧) ∈ P)
8 addclpr 10442 . . . . . . 7 ((𝑦P𝑤P) → (𝑦 +P 𝑤) ∈ P)
97, 8anim12i 614 . . . . . 6 (((𝑥P𝑧P) ∧ (𝑦P𝑤P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P))
109an4s 658 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P))
11 opelxpi 5594 . . . . 5 (((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P) → ⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩ ∈ (P × P))
12 enrex 10491 . . . . . 6 ~R ∈ V
1312ecelqsi 8355 . . . . 5 (⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩ ∈ (P × P) → [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R ∈ ((P × P) / ~R ))
1410, 11, 133syl 18 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R ∈ ((P × P) / ~R ))
156, 14eqeltrd 2915 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R ))
161, 3, 5, 152ecoptocl 8390 . 2 ((𝐴R𝐵R) → (𝐴 +R 𝐵) ∈ ((P × P) / ~R ))
1716, 1eleqtrrdi 2926 1 ((𝐴R𝐵R) → (𝐴 +R 𝐵) ∈ R)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cop 4575   × cxp 5555  (class class class)co 7158  [cec 8289   / cqs 8290  Pcnp 10283   +P cpp 10285   ~R cer 10288  Rcnr 10289   +R cplr 10293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-omul 8109  df-er 8291  df-ec 8293  df-qs 8297  df-ni 10296  df-pli 10297  df-mi 10298  df-lti 10299  df-plpq 10332  df-mpq 10333  df-ltpq 10334  df-enq 10335  df-nq 10336  df-erq 10337  df-plq 10338  df-mq 10339  df-1nq 10340  df-rq 10341  df-ltnq 10342  df-np 10405  df-plp 10407  df-ltp 10409  df-enr 10479  df-nr 10480  df-plr 10481
This theorem is referenced by:  dmaddsr  10509  map2psrpr  10534  axaddf  10569  axmulf  10570  axaddrcl  10576  axaddass  10580  axmulass  10581  axdistr  10582
  Copyright terms: Public domain W3C validator