MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclsr Structured version   Visualization version   GIF version

Theorem addclsr 10996
Description: Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addclsr ((𝐴R𝐵R) → (𝐴 +R 𝐵) ∈ R)

Proof of Theorem addclsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 10969 . . 3 R = ((P × P) / ~R )
2 oveq1 7360 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 +R [⟨𝑧, 𝑤⟩] ~R ))
32eleq1d 2813 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 +R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R )))
4 oveq2 7361 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 +R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 +R 𝐵))
54eleq1d 2813 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 +R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 +R 𝐵) ∈ ((P × P) / ~R )))
6 addsrpr 10988 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R )
7 addclpr 10931 . . . . . . 7 ((𝑥P𝑧P) → (𝑥 +P 𝑧) ∈ P)
8 addclpr 10931 . . . . . . 7 ((𝑦P𝑤P) → (𝑦 +P 𝑤) ∈ P)
97, 8anim12i 613 . . . . . 6 (((𝑥P𝑧P) ∧ (𝑦P𝑤P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P))
109an4s 660 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P))
11 opelxpi 5660 . . . . 5 (((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P) → ⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩ ∈ (P × P))
12 enrex 10980 . . . . . 6 ~R ∈ V
1312ecelqsi 8704 . . . . 5 (⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩ ∈ (P × P) → [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R ∈ ((P × P) / ~R ))
1410, 11, 133syl 18 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R ∈ ((P × P) / ~R ))
156, 14eqeltrd 2828 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R ))
161, 3, 5, 152ecoptocl 8742 . 2 ((𝐴R𝐵R) → (𝐴 +R 𝐵) ∈ ((P × P) / ~R ))
1716, 1eleqtrrdi 2839 1 ((𝐴R𝐵R) → (𝐴 +R 𝐵) ∈ R)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4585   × cxp 5621  (class class class)co 7353  [cec 8630   / cqs 8631  Pcnp 10772   +P cpp 10774   ~R cer 10777  Rcnr 10778   +R cplr 10782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-omul 8400  df-er 8632  df-ec 8634  df-qs 8638  df-ni 10785  df-pli 10786  df-mi 10787  df-lti 10788  df-plpq 10821  df-mpq 10822  df-ltpq 10823  df-enq 10824  df-nq 10825  df-erq 10826  df-plq 10827  df-mq 10828  df-1nq 10829  df-rq 10830  df-ltnq 10831  df-np 10894  df-plp 10896  df-ltp 10898  df-enr 10968  df-nr 10969  df-plr 10970
This theorem is referenced by:  dmaddsr  10998  map2psrpr  11023  axaddf  11058  axmulf  11059  axaddrcl  11065  axaddass  11069  axmulass  11070  axdistr  11071
  Copyright terms: Public domain W3C validator