| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addclsr | Structured version Visualization version GIF version | ||
| Description: Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addclsr | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) ∈ R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 10942 | . . 3 ⊢ R = ((P × P) / ~R ) | |
| 2 | oveq1 7348 | . . . 4 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) = (𝐴 +R [〈𝑧, 𝑤〉] ~R )) | |
| 3 | 2 | eleq1d 2816 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 +R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ))) |
| 4 | oveq2 7349 | . . . 4 ⊢ ([〈𝑧, 𝑤〉] ~R = 𝐵 → (𝐴 +R [〈𝑧, 𝑤〉] ~R ) = (𝐴 +R 𝐵)) | |
| 5 | 4 | eleq1d 2816 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ~R = 𝐵 → ((𝐴 +R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 +R 𝐵) ∈ ((P × P) / ~R ))) |
| 6 | addsrpr 10961 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) = [〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R ) | |
| 7 | addclpr 10904 | . . . . . . 7 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥 +P 𝑧) ∈ P) | |
| 8 | addclpr 10904 | . . . . . . 7 ⊢ ((𝑦 ∈ P ∧ 𝑤 ∈ P) → (𝑦 +P 𝑤) ∈ P) | |
| 9 | 7, 8 | anim12i 613 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑧 ∈ P) ∧ (𝑦 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P)) |
| 10 | 9 | an4s 660 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P)) |
| 11 | opelxpi 5648 | . . . . 5 ⊢ (((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P) → 〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉 ∈ (P × P)) | |
| 12 | enrex 10953 | . . . . . 6 ⊢ ~R ∈ V | |
| 13 | 12 | ecelqsi 8689 | . . . . 5 ⊢ (〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉 ∈ (P × P) → [〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R ∈ ((P × P) / ~R )) |
| 14 | 10, 11, 13 | 3syl 18 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → [〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R ∈ ((P × P) / ~R )) |
| 15 | 6, 14 | eqeltrd 2831 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R )) |
| 16 | 1, 3, 5, 15 | 2ecoptocl 8727 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) ∈ ((P × P) / ~R )) |
| 17 | 16, 1 | eleqtrrdi 2842 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) ∈ R) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4577 × cxp 5609 (class class class)co 7341 [cec 8615 / cqs 8616 Pcnp 10745 +P cpp 10747 ~R cer 10750 Rcnr 10751 +R cplr 10755 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-omul 8385 df-er 8617 df-ec 8619 df-qs 8623 df-ni 10758 df-pli 10759 df-mi 10760 df-lti 10761 df-plpq 10794 df-mpq 10795 df-ltpq 10796 df-enq 10797 df-nq 10798 df-erq 10799 df-plq 10800 df-mq 10801 df-1nq 10802 df-rq 10803 df-ltnq 10804 df-np 10867 df-plp 10869 df-ltp 10871 df-enr 10941 df-nr 10942 df-plr 10943 |
| This theorem is referenced by: dmaddsr 10971 map2psrpr 10996 axaddf 11031 axmulf 11032 axaddrcl 11038 axaddass 11042 axmulass 11043 axdistr 11044 |
| Copyright terms: Public domain | W3C validator |