| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addclsr | Structured version Visualization version GIF version | ||
| Description: Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addclsr | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) ∈ R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 10985 | . . 3 ⊢ R = ((P × P) / ~R ) | |
| 2 | oveq1 7376 | . . . 4 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) = (𝐴 +R [〈𝑧, 𝑤〉] ~R )) | |
| 3 | 2 | eleq1d 2813 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 +R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ))) |
| 4 | oveq2 7377 | . . . 4 ⊢ ([〈𝑧, 𝑤〉] ~R = 𝐵 → (𝐴 +R [〈𝑧, 𝑤〉] ~R ) = (𝐴 +R 𝐵)) | |
| 5 | 4 | eleq1d 2813 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ~R = 𝐵 → ((𝐴 +R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 +R 𝐵) ∈ ((P × P) / ~R ))) |
| 6 | addsrpr 11004 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) = [〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R ) | |
| 7 | addclpr 10947 | . . . . . . 7 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥 +P 𝑧) ∈ P) | |
| 8 | addclpr 10947 | . . . . . . 7 ⊢ ((𝑦 ∈ P ∧ 𝑤 ∈ P) → (𝑦 +P 𝑤) ∈ P) | |
| 9 | 7, 8 | anim12i 613 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑧 ∈ P) ∧ (𝑦 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P)) |
| 10 | 9 | an4s 660 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P)) |
| 11 | opelxpi 5668 | . . . . 5 ⊢ (((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P) → 〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉 ∈ (P × P)) | |
| 12 | enrex 10996 | . . . . . 6 ⊢ ~R ∈ V | |
| 13 | 12 | ecelqsi 8720 | . . . . 5 ⊢ (〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉 ∈ (P × P) → [〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R ∈ ((P × P) / ~R )) |
| 14 | 10, 11, 13 | 3syl 18 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → [〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R ∈ ((P × P) / ~R )) |
| 15 | 6, 14 | eqeltrd 2828 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R )) |
| 16 | 1, 3, 5, 15 | 2ecoptocl 8758 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) ∈ ((P × P) / ~R )) |
| 17 | 16, 1 | eleqtrrdi 2839 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) ∈ R) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4591 × cxp 5629 (class class class)co 7369 [cec 8646 / cqs 8647 Pcnp 10788 +P cpp 10790 ~R cer 10793 Rcnr 10794 +R cplr 10798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-omul 8416 df-er 8648 df-ec 8650 df-qs 8654 df-ni 10801 df-pli 10802 df-mi 10803 df-lti 10804 df-plpq 10837 df-mpq 10838 df-ltpq 10839 df-enq 10840 df-nq 10841 df-erq 10842 df-plq 10843 df-mq 10844 df-1nq 10845 df-rq 10846 df-ltnq 10847 df-np 10910 df-plp 10912 df-ltp 10914 df-enr 10984 df-nr 10985 df-plr 10986 |
| This theorem is referenced by: dmaddsr 11014 map2psrpr 11039 axaddf 11074 axmulf 11075 axaddrcl 11081 axaddass 11085 axmulass 11086 axdistr 11087 |
| Copyright terms: Public domain | W3C validator |