MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ecoptocl Structured version   Visualization version   GIF version

Theorem 3ecoptocl 8847
Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.)
Hypotheses
Ref Expression
3ecoptocl.1 𝑆 = ((𝐷 × 𝐷) / 𝑅)
3ecoptocl.2 ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))
3ecoptocl.3 ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → (𝜓𝜒))
3ecoptocl.4 ([⟨𝑣, 𝑢⟩]𝑅 = 𝐶 → (𝜒𝜃))
3ecoptocl.5 (((𝑥𝐷𝑦𝐷) ∧ (𝑧𝐷𝑤𝐷) ∧ (𝑣𝐷𝑢𝐷)) → 𝜑)
Assertion
Ref Expression
3ecoptocl ((𝐴𝑆𝐵𝑆𝐶𝑆) → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑧,𝐵,𝑤,𝑣,𝑢   𝑣,𝐶,𝑢   𝑥,𝐷,𝑦,𝑧,𝑤,𝑣,𝑢   𝑧,𝑆,𝑤,𝑣,𝑢   𝑥,𝑅,𝑦,𝑧,𝑤,𝑣,𝑢   𝜓,𝑥,𝑦   𝜒,𝑧,𝑤   𝜃,𝑣,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝜓(𝑧,𝑤,𝑣,𝑢)   𝜒(𝑥,𝑦,𝑣,𝑢)   𝜃(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦)

Proof of Theorem 3ecoptocl
StepHypRef Expression
1 3ecoptocl.1 . . . 4 𝑆 = ((𝐷 × 𝐷) / 𝑅)
2 3ecoptocl.3 . . . . 5 ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → (𝜓𝜒))
32imbi2d 340 . . . 4 ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → ((𝐴𝑆𝜓) ↔ (𝐴𝑆𝜒)))
4 3ecoptocl.4 . . . . 5 ([⟨𝑣, 𝑢⟩]𝑅 = 𝐶 → (𝜒𝜃))
54imbi2d 340 . . . 4 ([⟨𝑣, 𝑢⟩]𝑅 = 𝐶 → ((𝐴𝑆𝜒) ↔ (𝐴𝑆𝜃)))
6 3ecoptocl.2 . . . . . . 7 ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))
76imbi2d 340 . . . . . 6 ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → ((((𝑧𝐷𝑤𝐷) ∧ (𝑣𝐷𝑢𝐷)) → 𝜑) ↔ (((𝑧𝐷𝑤𝐷) ∧ (𝑣𝐷𝑢𝐷)) → 𝜓)))
8 3ecoptocl.5 . . . . . . 7 (((𝑥𝐷𝑦𝐷) ∧ (𝑧𝐷𝑤𝐷) ∧ (𝑣𝐷𝑢𝐷)) → 𝜑)
983expib 1121 . . . . . 6 ((𝑥𝐷𝑦𝐷) → (((𝑧𝐷𝑤𝐷) ∧ (𝑣𝐷𝑢𝐷)) → 𝜑))
101, 7, 9ecoptocl 8845 . . . . 5 (𝐴𝑆 → (((𝑧𝐷𝑤𝐷) ∧ (𝑣𝐷𝑢𝐷)) → 𝜓))
1110com12 32 . . . 4 (((𝑧𝐷𝑤𝐷) ∧ (𝑣𝐷𝑢𝐷)) → (𝐴𝑆𝜓))
121, 3, 5, 112ecoptocl 8846 . . 3 ((𝐵𝑆𝐶𝑆) → (𝐴𝑆𝜃))
1312com12 32 . 2 (𝐴𝑆 → ((𝐵𝑆𝐶𝑆) → 𝜃))
14133impib 1115 1 ((𝐴𝑆𝐵𝑆𝐶𝑆) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  cop 4636   × cxp 5686  [cec 8741   / cqs 8742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148  df-opab 5210  df-xp 5694  df-cnv 5696  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ec 8745  df-qs 8749
This theorem is referenced by:  ecovass  8862  ecovdi  8863  ltsosr  11131  ltasr  11137
  Copyright terms: Public domain W3C validator