![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecovcom | Structured version Visualization version GIF version |
Description: Lemma used to transfer a commutative law via an equivalence relation. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.) |
Ref | Expression |
---|---|
ecovcom.1 | ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) |
ecovcom.2 | ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) = [⟨𝐷, 𝐺⟩] ∼ ) |
ecovcom.3 | ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ ) = [⟨𝐻, 𝐽⟩] ∼ ) |
ecovcom.4 | ⊢ 𝐷 = 𝐻 |
ecovcom.5 | ⊢ 𝐺 = 𝐽 |
Ref | Expression |
---|---|
ecovcom | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecovcom.1 | . 2 ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) | |
2 | oveq1 7411 | . . 3 ⊢ ([⟨𝑥, 𝑦⟩] ∼ = 𝐴 → ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) = (𝐴 + [⟨𝑧, 𝑤⟩] ∼ )) | |
3 | oveq2 7412 | . . 3 ⊢ ([⟨𝑥, 𝑦⟩] ∼ = 𝐴 → ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ ) = ([⟨𝑧, 𝑤⟩] ∼ + 𝐴)) | |
4 | 2, 3 | eqeq12d 2742 | . 2 ⊢ ([⟨𝑥, 𝑦⟩] ∼ = 𝐴 → (([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) = ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ ) ↔ (𝐴 + [⟨𝑧, 𝑤⟩] ∼ ) = ([⟨𝑧, 𝑤⟩] ∼ + 𝐴))) |
5 | oveq2 7412 | . . 3 ⊢ ([⟨𝑧, 𝑤⟩] ∼ = 𝐵 → (𝐴 + [⟨𝑧, 𝑤⟩] ∼ ) = (𝐴 + 𝐵)) | |
6 | oveq1 7411 | . . 3 ⊢ ([⟨𝑧, 𝑤⟩] ∼ = 𝐵 → ([⟨𝑧, 𝑤⟩] ∼ + 𝐴) = (𝐵 + 𝐴)) | |
7 | 5, 6 | eqeq12d 2742 | . 2 ⊢ ([⟨𝑧, 𝑤⟩] ∼ = 𝐵 → ((𝐴 + [⟨𝑧, 𝑤⟩] ∼ ) = ([⟨𝑧, 𝑤⟩] ∼ + 𝐴) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
8 | ecovcom.4 | . . . 4 ⊢ 𝐷 = 𝐻 | |
9 | ecovcom.5 | . . . 4 ⊢ 𝐺 = 𝐽 | |
10 | opeq12 4870 | . . . . 5 ⊢ ((𝐷 = 𝐻 ∧ 𝐺 = 𝐽) → ⟨𝐷, 𝐺⟩ = ⟨𝐻, 𝐽⟩) | |
11 | 10 | eceq1d 8741 | . . . 4 ⊢ ((𝐷 = 𝐻 ∧ 𝐺 = 𝐽) → [⟨𝐷, 𝐺⟩] ∼ = [⟨𝐻, 𝐽⟩] ∼ ) |
12 | 8, 9, 11 | mp2an 689 | . . 3 ⊢ [⟨𝐷, 𝐺⟩] ∼ = [⟨𝐻, 𝐽⟩] ∼ |
13 | ecovcom.2 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) = [⟨𝐷, 𝐺⟩] ∼ ) | |
14 | ecovcom.3 | . . . 4 ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ ) = [⟨𝐻, 𝐽⟩] ∼ ) | |
15 | 14 | ancoms 458 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ ) = [⟨𝐻, 𝐽⟩] ∼ ) |
16 | 12, 13, 15 | 3eqtr4a 2792 | . 2 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) = ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ )) |
17 | 1, 4, 7, 16 | 2ecoptocl 8801 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⟨cop 4629 × cxp 5667 (class class class)co 7404 [cec 8700 / cqs 8701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-xp 5675 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fv 6544 df-ov 7407 df-ec 8704 df-qs 8708 |
This theorem is referenced by: addcomsr 11081 mulcomsr 11083 axmulcom 11149 |
Copyright terms: Public domain | W3C validator |