| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecovcom | Structured version Visualization version GIF version | ||
| Description: Lemma used to transfer a commutative law via an equivalence relation. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.) |
| Ref | Expression |
|---|---|
| ecovcom.1 | ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) |
| ecovcom.2 | ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐷, 𝐺〉] ∼ ) |
| ecovcom.3 | ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) |
| ecovcom.4 | ⊢ 𝐷 = 𝐻 |
| ecovcom.5 | ⊢ 𝐺 = 𝐽 |
| Ref | Expression |
|---|---|
| ecovcom | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecovcom.1 | . 2 ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) | |
| 2 | oveq1 7438 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ∼ = 𝐴 → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = (𝐴 + [〈𝑧, 𝑤〉] ∼ )) | |
| 3 | oveq2 7439 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ∼ = 𝐴 → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + 𝐴)) | |
| 4 | 2, 3 | eqeq12d 2753 | . 2 ⊢ ([〈𝑥, 𝑦〉] ∼ = 𝐴 → (([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) ↔ (𝐴 + [〈𝑧, 𝑤〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + 𝐴))) |
| 5 | oveq2 7439 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ∼ = 𝐵 → (𝐴 + [〈𝑧, 𝑤〉] ∼ ) = (𝐴 + 𝐵)) | |
| 6 | oveq1 7438 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ∼ = 𝐵 → ([〈𝑧, 𝑤〉] ∼ + 𝐴) = (𝐵 + 𝐴)) | |
| 7 | 5, 6 | eqeq12d 2753 | . 2 ⊢ ([〈𝑧, 𝑤〉] ∼ = 𝐵 → ((𝐴 + [〈𝑧, 𝑤〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + 𝐴) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
| 8 | ecovcom.4 | . . . 4 ⊢ 𝐷 = 𝐻 | |
| 9 | ecovcom.5 | . . . 4 ⊢ 𝐺 = 𝐽 | |
| 10 | opeq12 4875 | . . . . 5 ⊢ ((𝐷 = 𝐻 ∧ 𝐺 = 𝐽) → 〈𝐷, 𝐺〉 = 〈𝐻, 𝐽〉) | |
| 11 | 10 | eceq1d 8785 | . . . 4 ⊢ ((𝐷 = 𝐻 ∧ 𝐺 = 𝐽) → [〈𝐷, 𝐺〉] ∼ = [〈𝐻, 𝐽〉] ∼ ) |
| 12 | 8, 9, 11 | mp2an 692 | . . 3 ⊢ [〈𝐷, 𝐺〉] ∼ = [〈𝐻, 𝐽〉] ∼ |
| 13 | ecovcom.2 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐷, 𝐺〉] ∼ ) | |
| 14 | ecovcom.3 | . . . 4 ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) | |
| 15 | 14 | ancoms 458 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) |
| 16 | 12, 13, 15 | 3eqtr4a 2803 | . 2 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ )) |
| 17 | 1, 4, 7, 16 | 2ecoptocl 8848 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4632 × cxp 5683 (class class class)co 7431 [cec 8743 / cqs 8744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fv 6569 df-ov 7434 df-ec 8747 df-qs 8751 |
| This theorem is referenced by: addcomsr 11127 mulcomsr 11129 axmulcom 11195 |
| Copyright terms: Public domain | W3C validator |