MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4001lem2 Structured version   Visualization version   GIF version

Theorem 4001lem2 17053
Description: Lemma for 4001prm 17056. Calculate a power mod. In decimal, we calculate 2↑400 = (2↑200)↑2≡902↑2 = 203𝑁 + 1401 and 2↑800 = (2↑400)↑2≡1401↑2 = 490𝑁 + 2311 ≡2311. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
4001prm.1 𝑁 = 4001
Assertion
Ref Expression
4001lem2 ((2↑800) mod 𝑁) = (2311 mod 𝑁)

Proof of Theorem 4001lem2
StepHypRef Expression
1 4001prm.1 . . 3 𝑁 = 4001
2 4nn0 12403 . . . . . 6 4 ∈ ℕ0
3 0nn0 12399 . . . . . 6 0 ∈ ℕ0
42, 3deccl 12606 . . . . 5 40 ∈ ℕ0
54, 3deccl 12606 . . . 4 400 ∈ ℕ0
6 1nn 12139 . . . 4 1 ∈ ℕ
75, 6decnncl 12611 . . 3 4001 ∈ ℕ
81, 7eqeltri 2824 . 2 𝑁 ∈ ℕ
9 2nn 12201 . 2 2 ∈ ℕ
10 9nn0 12408 . . . . 5 9 ∈ ℕ0
112, 10deccl 12606 . . . 4 49 ∈ ℕ0
1211, 3deccl 12606 . . 3 490 ∈ ℕ0
1312nn0zi 12500 . 2 490 ∈ ℤ
14 1nn0 12400 . . . . 5 1 ∈ ℕ0
1514, 2deccl 12606 . . . 4 14 ∈ ℕ0
1615, 3deccl 12606 . . 3 140 ∈ ℕ0
1716, 14deccl 12606 . 2 1401 ∈ ℕ0
18 2nn0 12401 . . . . 5 2 ∈ ℕ0
19 3nn0 12402 . . . . 5 3 ∈ ℕ0
2018, 19deccl 12606 . . . 4 23 ∈ ℕ0
2120, 14deccl 12606 . . 3 231 ∈ ℕ0
2221, 14deccl 12606 . 2 2311 ∈ ℕ0
2318, 3deccl 12606 . . . 4 20 ∈ ℕ0
2423, 3deccl 12606 . . 3 200 ∈ ℕ0
2523, 19deccl 12606 . . . 4 203 ∈ ℕ0
2625nn0zi 12500 . . 3 203 ∈ ℤ
2710, 3deccl 12606 . . . 4 90 ∈ ℕ0
2827, 18deccl 12606 . . 3 902 ∈ ℕ0
2914001lem1 17052 . . 3 ((2↑200) mod 𝑁) = (902 mod 𝑁)
3024nn0cni 12396 . . . 4 200 ∈ ℂ
31 2cn 12203 . . . 4 2 ∈ ℂ
32 eqid 2729 . . . . 5 200 = 200
33 eqid 2729 . . . . . 6 20 = 20
34 2t2e4 12287 . . . . . 6 (2 · 2) = 4
3531mul02i 11305 . . . . . 6 (0 · 2) = 0
3618, 18, 3, 33, 34, 35decmul1 12655 . . . . 5 (20 · 2) = 40
3718, 23, 3, 32, 36, 35decmul1 12655 . . . 4 (200 · 2) = 400
3830, 31, 37mulcomli 11124 . . 3 (2 · 200) = 400
39 eqid 2729 . . . . 5 1401 = 1401
40 6nn0 12405 . . . . . . 7 6 ∈ ℕ0
4114, 40deccl 12606 . . . . . 6 16 ∈ ℕ0
42 eqid 2729 . . . . . 6 400 = 400
43 eqid 2729 . . . . . . 7 140 = 140
44 eqid 2729 . . . . . . . 8 14 = 14
45 4p2e6 12276 . . . . . . . 8 (4 + 2) = 6
4614, 2, 18, 44, 45decaddi 12651 . . . . . . 7 (14 + 2) = 16
47 00id 11291 . . . . . . 7 (0 + 0) = 0
4815, 3, 18, 3, 43, 33, 46, 47decadd 12645 . . . . . 6 (140 + 20) = 160
49 eqid 2729 . . . . . . 7 40 = 40
5041nn0cni 12396 . . . . . . . 8 16 ∈ ℂ
5150addridi 11303 . . . . . . 7 (16 + 0) = 16
52 eqid 2729 . . . . . . . 8 203 = 203
53 ax-1cn 11067 . . . . . . . . . 10 1 ∈ ℂ
5453addridi 11303 . . . . . . . . 9 (1 + 0) = 1
5514dec0h 12613 . . . . . . . . 9 1 = 01
5654, 55eqtri 2752 . . . . . . . 8 (1 + 0) = 01
5753addlidi 11304 . . . . . . . . . 10 (0 + 1) = 1
5857, 14eqeltri 2824 . . . . . . . . 9 (0 + 1) ∈ ℕ0
59 4cn 12213 . . . . . . . . . 10 4 ∈ ℂ
60 4t2e8 12291 . . . . . . . . . 10 (4 · 2) = 8
6159, 31, 60mulcomli 11124 . . . . . . . . 9 (2 · 4) = 8
6259mul02i 11305 . . . . . . . . . . 11 (0 · 4) = 0
6362, 57oveq12i 7361 . . . . . . . . . 10 ((0 · 4) + (0 + 1)) = (0 + 1)
6463, 57eqtri 2752 . . . . . . . . 9 ((0 · 4) + (0 + 1)) = 1
6518, 3, 58, 33, 2, 61, 64decrmanc 12648 . . . . . . . 8 ((20 · 4) + (0 + 1)) = 81
66 2p1e3 12265 . . . . . . . . 9 (2 + 1) = 3
67 3cn 12209 . . . . . . . . . 10 3 ∈ ℂ
68 4t3e12 12689 . . . . . . . . . 10 (4 · 3) = 12
6959, 67, 68mulcomli 11124 . . . . . . . . 9 (3 · 4) = 12
7014, 18, 66, 69decsuc 12622 . . . . . . . 8 ((3 · 4) + 1) = 13
7123, 19, 3, 14, 52, 56, 2, 19, 14, 65, 70decmac 12643 . . . . . . 7 ((203 · 4) + (1 + 0)) = 813
7225nn0cni 12396 . . . . . . . . . 10 203 ∈ ℂ
7372mul01i 11306 . . . . . . . . 9 (203 · 0) = 0
7473oveq1i 7359 . . . . . . . 8 ((203 · 0) + 6) = (0 + 6)
75 6cn 12219 . . . . . . . . 9 6 ∈ ℂ
7675addlidi 11304 . . . . . . . 8 (0 + 6) = 6
7740dec0h 12613 . . . . . . . 8 6 = 06
7874, 76, 773eqtri 2756 . . . . . . 7 ((203 · 0) + 6) = 06
792, 3, 14, 40, 49, 51, 25, 40, 3, 71, 78decma2c 12644 . . . . . 6 ((203 · 40) + (16 + 0)) = 8136
8073oveq1i 7359 . . . . . . 7 ((203 · 0) + 0) = (0 + 0)
813dec0h 12613 . . . . . . 7 0 = 00
8280, 47, 813eqtri 2756 . . . . . 6 ((203 · 0) + 0) = 00
834, 3, 41, 3, 42, 48, 25, 3, 3, 79, 82decma2c 12644 . . . . 5 ((203 · 400) + (140 + 20)) = 81360
8431mulridi 11119 . . . . . . 7 (2 · 1) = 2
8553mul02i 11305 . . . . . . 7 (0 · 1) = 0
8614, 18, 3, 33, 84, 85decmul1 12655 . . . . . 6 (20 · 1) = 20
8767mulridi 11119 . . . . . . . 8 (3 · 1) = 3
8887oveq1i 7359 . . . . . . 7 ((3 · 1) + 1) = (3 + 1)
89 3p1e4 12268 . . . . . . 7 (3 + 1) = 4
9088, 89eqtri 2752 . . . . . 6 ((3 · 1) + 1) = 4
9123, 19, 14, 52, 14, 86, 90decrmanc 12648 . . . . 5 ((203 · 1) + 1) = 204
925, 14, 16, 14, 1, 39, 25, 2, 23, 83, 91decma2c 12644 . . . 4 ((203 · 𝑁) + 1401) = 813604
93 eqid 2729 . . . . 5 902 = 902
94 8nn0 12407 . . . . . . 7 8 ∈ ℕ0
9514, 94deccl 12606 . . . . . 6 18 ∈ ℕ0
9695, 3deccl 12606 . . . . 5 180 ∈ ℕ0
97 eqid 2729 . . . . . 6 90 = 90
98 eqid 2729 . . . . . 6 180 = 180
9995nn0cni 12396 . . . . . . . 8 18 ∈ ℂ
10099addridi 11303 . . . . . . 7 (18 + 0) = 18
101 1p2e3 12266 . . . . . . . . 9 (1 + 2) = 3
102101, 19eqeltri 2824 . . . . . . . 8 (1 + 2) ∈ ℕ0
103 9t9e81 12720 . . . . . . . 8 (9 · 9) = 81
104 9cn 12228 . . . . . . . . . . 11 9 ∈ ℂ
105104mul02i 11305 . . . . . . . . . 10 (0 · 9) = 0
106105, 101oveq12i 7361 . . . . . . . . 9 ((0 · 9) + (1 + 2)) = (0 + 3)
10767addlidi 11304 . . . . . . . . 9 (0 + 3) = 3
108106, 107eqtri 2752 . . . . . . . 8 ((0 · 9) + (1 + 2)) = 3
10910, 3, 102, 97, 10, 103, 108decrmanc 12648 . . . . . . 7 ((90 · 9) + (1 + 2)) = 813
110 9t2e18 12713 . . . . . . . . 9 (9 · 2) = 18
111104, 31, 110mulcomli 11124 . . . . . . . 8 (2 · 9) = 18
112 1p1e2 12248 . . . . . . . 8 (1 + 1) = 2
113 8p8e16 12677 . . . . . . . 8 (8 + 8) = 16
11414, 94, 94, 111, 112, 40, 113decaddci 12652 . . . . . . 7 ((2 · 9) + 8) = 26
11527, 18, 14, 94, 93, 100, 10, 40, 18, 109, 114decmac 12643 . . . . . 6 ((902 · 9) + (18 + 0)) = 8136
11628nn0cni 12396 . . . . . . . . 9 902 ∈ ℂ
117116mul01i 11306 . . . . . . . 8 (902 · 0) = 0
118117oveq1i 7359 . . . . . . 7 ((902 · 0) + 0) = (0 + 0)
119118, 47, 813eqtri 2756 . . . . . 6 ((902 · 0) + 0) = 00
12010, 3, 95, 3, 97, 98, 28, 3, 3, 115, 119decma2c 12644 . . . . 5 ((902 · 90) + 180) = 81360
12118, 10, 3, 97, 110, 35decmul1 12655 . . . . . 6 (90 · 2) = 180
12218, 27, 18, 93, 121, 34decmul1 12655 . . . . 5 (902 · 2) = 1804
12328, 27, 18, 93, 2, 96, 120, 122decmul2c 12657 . . . 4 (902 · 902) = 813604
12492, 123eqtr4i 2755 . . 3 ((203 · 𝑁) + 1401) = (902 · 902)
1258, 9, 24, 26, 28, 17, 29, 38, 124mod2xi 16981 . 2 ((2↑400) mod 𝑁) = (1401 mod 𝑁)
1265nn0cni 12396 . . 3 400 ∈ ℂ
12718, 2, 3, 49, 60, 35decmul1 12655 . . . 4 (40 · 2) = 80
12818, 4, 3, 42, 127, 35decmul1 12655 . . 3 (400 · 2) = 800
129126, 31, 128mulcomli 11124 . 2 (2 · 400) = 800
130 eqid 2729 . . . 4 2311 = 2311
13118, 94deccl 12606 . . . . 5 28 ∈ ℕ0
132 eqid 2729 . . . . . 6 231 = 231
133 eqid 2729 . . . . . 6 49 = 49
134 7nn0 12406 . . . . . . 7 7 ∈ ℕ0
135 7p1e8 12272 . . . . . . 7 (7 + 1) = 8
136 eqid 2729 . . . . . . . 8 23 = 23
137 4p3e7 12277 . . . . . . . . 9 (4 + 3) = 7
13859, 67, 137addcomli 11308 . . . . . . . 8 (3 + 4) = 7
13918, 19, 2, 136, 138decaddi 12651 . . . . . . 7 (23 + 4) = 27
14018, 134, 135, 139decsuc 12622 . . . . . 6 ((23 + 4) + 1) = 28
141 9p1e10 12593 . . . . . . 7 (9 + 1) = 10
142104, 53, 141addcomli 11308 . . . . . 6 (1 + 9) = 10
14320, 14, 2, 10, 132, 133, 140, 142decaddc2 12647 . . . . 5 (231 + 49) = 280
144131nn0cni 12396 . . . . . . 7 28 ∈ ℂ
145144addridi 11303 . . . . . 6 (28 + 0) = 28
14631addridi 11303 . . . . . . . 8 (2 + 0) = 2
147146, 18eqeltri 2824 . . . . . . 7 (2 + 0) ∈ ℕ0
148 eqid 2729 . . . . . . 7 490 = 490
149 4t4e16 12690 . . . . . . . . 9 (4 · 4) = 16
150 6p3e9 12283 . . . . . . . . 9 (6 + 3) = 9
15114, 40, 19, 149, 150decaddi 12651 . . . . . . . 8 ((4 · 4) + 3) = 19
152 9t4e36 12715 . . . . . . . 8 (9 · 4) = 36
1532, 2, 10, 133, 40, 19, 151, 152decmul1c 12656 . . . . . . 7 (49 · 4) = 196
15462, 146oveq12i 7361 . . . . . . . 8 ((0 · 4) + (2 + 0)) = (0 + 2)
15531addlidi 11304 . . . . . . . 8 (0 + 2) = 2
156154, 155eqtri 2752 . . . . . . 7 ((0 · 4) + (2 + 0)) = 2
15711, 3, 147, 148, 2, 153, 156decrmanc 12648 . . . . . 6 ((490 · 4) + (2 + 0)) = 1962
15812nn0cni 12396 . . . . . . . . 9 490 ∈ ℂ
159158mul01i 11306 . . . . . . . 8 (490 · 0) = 0
160159oveq1i 7359 . . . . . . 7 ((490 · 0) + 8) = (0 + 8)
161 8cn 12225 . . . . . . . 8 8 ∈ ℂ
162161addlidi 11304 . . . . . . 7 (0 + 8) = 8
16394dec0h 12613 . . . . . . 7 8 = 08
164160, 162, 1633eqtri 2756 . . . . . 6 ((490 · 0) + 8) = 08
1652, 3, 18, 94, 49, 145, 12, 94, 3, 157, 164decma2c 12644 . . . . 5 ((490 · 40) + (28 + 0)) = 19628
166159oveq1i 7359 . . . . . 6 ((490 · 0) + 0) = (0 + 0)
167166, 47, 813eqtri 2756 . . . . 5 ((490 · 0) + 0) = 00
1684, 3, 131, 3, 42, 143, 12, 3, 3, 165, 167decma2c 12644 . . . 4 ((490 · 400) + (231 + 49)) = 196280
16959mulridi 11119 . . . . . 6 (4 · 1) = 4
170104mulridi 11119 . . . . . 6 (9 · 1) = 9
17114, 2, 10, 133, 169, 170decmul1 12655 . . . . 5 (49 · 1) = 49
17285oveq1i 7359 . . . . . 6 ((0 · 1) + 1) = (0 + 1)
173172, 57eqtri 2752 . . . . 5 ((0 · 1) + 1) = 1
17411, 3, 14, 148, 14, 171, 173decrmanc 12648 . . . 4 ((490 · 1) + 1) = 491
1755, 14, 21, 14, 1, 130, 12, 14, 11, 168, 174decma2c 12644 . . 3 ((490 · 𝑁) + 2311) = 1962801
17615nn0cni 12396 . . . . . . 7 14 ∈ ℂ
177176addridi 11303 . . . . . 6 (14 + 0) = 14
178 5nn0 12404 . . . . . . . 8 5 ∈ ℕ0
179178, 40deccl 12606 . . . . . . 7 56 ∈ ℕ0
180179, 3deccl 12606 . . . . . 6 560 ∈ ℕ0
181 eqid 2729 . . . . . . . 8 560 = 560
182179nn0cni 12396 . . . . . . . . 9 56 ∈ ℂ
183182addlidi 11304 . . . . . . . 8 (0 + 56) = 56
1843, 14, 179, 3, 55, 181, 183, 54decadd 12645 . . . . . . 7 (1 + 560) = 561
185182addridi 11303 . . . . . . . 8 (56 + 0) = 56
186 5cn 12216 . . . . . . . . . . 11 5 ∈ ℂ
187186addridi 11303 . . . . . . . . . 10 (5 + 0) = 5
188187, 178eqeltri 2824 . . . . . . . . 9 (5 + 0) ∈ ℕ0
18953mulridi 11119 . . . . . . . . 9 (1 · 1) = 1
190169, 187oveq12i 7361 . . . . . . . . . 10 ((4 · 1) + (5 + 0)) = (4 + 5)
191 5p4e9 12281 . . . . . . . . . . 11 (5 + 4) = 9
192186, 59, 191addcomli 11308 . . . . . . . . . 10 (4 + 5) = 9
193190, 192eqtri 2752 . . . . . . . . 9 ((4 · 1) + (5 + 0)) = 9
19414, 2, 188, 44, 14, 189, 193decrmanc 12648 . . . . . . . 8 ((14 · 1) + (5 + 0)) = 19
19585oveq1i 7359 . . . . . . . . 9 ((0 · 1) + 6) = (0 + 6)
196195, 76, 773eqtri 2756 . . . . . . . 8 ((0 · 1) + 6) = 06
19715, 3, 178, 40, 43, 185, 14, 40, 3, 194, 196decmac 12643 . . . . . . 7 ((140 · 1) + (56 + 0)) = 196
198189oveq1i 7359 . . . . . . . 8 ((1 · 1) + 1) = (1 + 1)
19918dec0h 12613 . . . . . . . 8 2 = 02
200198, 112, 1993eqtri 2756 . . . . . . 7 ((1 · 1) + 1) = 02
20116, 14, 179, 14, 39, 184, 14, 18, 3, 197, 200decmac 12643 . . . . . 6 ((1401 · 1) + (1 + 560)) = 1962
20259mullidi 11120 . . . . . . . . . . . 12 (1 · 4) = 4
203202oveq1i 7359 . . . . . . . . . . 11 ((1 · 4) + 1) = (4 + 1)
204 4p1e5 12269 . . . . . . . . . . 11 (4 + 1) = 5
205203, 204eqtri 2752 . . . . . . . . . 10 ((1 · 4) + 1) = 5
2062, 14, 2, 44, 40, 14, 205, 149decmul1c 12656 . . . . . . . . 9 (14 · 4) = 56
20775addridi 11303 . . . . . . . . 9 (6 + 0) = 6
208178, 40, 3, 206, 207decaddi 12651 . . . . . . . 8 ((14 · 4) + 0) = 56
209 0cn 11107 . . . . . . . . 9 0 ∈ ℂ
21059mul01i 11306 . . . . . . . . . 10 (4 · 0) = 0
211210, 81eqtri 2752 . . . . . . . . 9 (4 · 0) = 00
21259, 209, 211mulcomli 11124 . . . . . . . 8 (0 · 4) = 00
2132, 15, 3, 43, 3, 3, 208, 212decmul1c 12656 . . . . . . 7 (140 · 4) = 560
214202oveq1i 7359 . . . . . . . 8 ((1 · 4) + 4) = (4 + 4)
215 4p4e8 12278 . . . . . . . 8 (4 + 4) = 8
216214, 215eqtri 2752 . . . . . . 7 ((1 · 4) + 4) = 8
21716, 14, 2, 39, 2, 213, 216decrmanc 12648 . . . . . 6 ((1401 · 4) + 4) = 5608
21814, 2, 14, 2, 44, 177, 17, 94, 180, 201, 217decma2c 12644 . . . . 5 ((1401 · 14) + (14 + 0)) = 19628
21917nn0cni 12396 . . . . . . . 8 1401 ∈ ℂ
220219mul01i 11306 . . . . . . 7 (1401 · 0) = 0
221220oveq1i 7359 . . . . . 6 ((1401 · 0) + 0) = (0 + 0)
222221, 47, 813eqtri 2756 . . . . 5 ((1401 · 0) + 0) = 00
22315, 3, 15, 3, 43, 43, 17, 3, 3, 218, 222decma2c 12644 . . . 4 ((1401 · 140) + 140) = 196280
224219mulridi 11119 . . . 4 (1401 · 1) = 1401
22517, 16, 14, 39, 14, 16, 223, 224decmul2c 12657 . . 3 (1401 · 1401) = 1962801
226175, 225eqtr4i 2755 . 2 ((490 · 𝑁) + 2311) = (1401 · 1401)
2278, 9, 5, 13, 17, 22, 125, 129, 226mod2xi 16981 1 ((2↑800) mod 𝑁) = (2311 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cn 12128  2c2 12183  3c3 12184  4c4 12185  5c5 12186  6c6 12187  7c7 12188  8c8 12189  9c9 12190  0cn0 12384  cdc 12591   mod cmo 13773  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969
This theorem is referenced by:  4001lem3  17054  4001lem4  17055
  Copyright terms: Public domain W3C validator