Proof of Theorem 4001lem2
Step | Hyp | Ref
| Expression |
1 | | 4001prm.1 |
. . 3
⊢ 𝑁 = ;;;4001 |
2 | | 4nn0 12182 |
. . . . . 6
⊢ 4 ∈
ℕ0 |
3 | | 0nn0 12178 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
4 | 2, 3 | deccl 12381 |
. . . . 5
⊢ ;40 ∈
ℕ0 |
5 | 4, 3 | deccl 12381 |
. . . 4
⊢ ;;400 ∈ ℕ0 |
6 | | 1nn 11914 |
. . . 4
⊢ 1 ∈
ℕ |
7 | 5, 6 | decnncl 12386 |
. . 3
⊢ ;;;4001
∈ ℕ |
8 | 1, 7 | eqeltri 2835 |
. 2
⊢ 𝑁 ∈ ℕ |
9 | | 2nn 11976 |
. 2
⊢ 2 ∈
ℕ |
10 | | 9nn0 12187 |
. . . . 5
⊢ 9 ∈
ℕ0 |
11 | 2, 10 | deccl 12381 |
. . . 4
⊢ ;49 ∈
ℕ0 |
12 | 11, 3 | deccl 12381 |
. . 3
⊢ ;;490 ∈ ℕ0 |
13 | 12 | nn0zi 12275 |
. 2
⊢ ;;490 ∈ ℤ |
14 | | 1nn0 12179 |
. . . . 5
⊢ 1 ∈
ℕ0 |
15 | 14, 2 | deccl 12381 |
. . . 4
⊢ ;14 ∈
ℕ0 |
16 | 15, 3 | deccl 12381 |
. . 3
⊢ ;;140 ∈ ℕ0 |
17 | 16, 14 | deccl 12381 |
. 2
⊢ ;;;1401
∈ ℕ0 |
18 | | 2nn0 12180 |
. . . . 5
⊢ 2 ∈
ℕ0 |
19 | | 3nn0 12181 |
. . . . 5
⊢ 3 ∈
ℕ0 |
20 | 18, 19 | deccl 12381 |
. . . 4
⊢ ;23 ∈
ℕ0 |
21 | 20, 14 | deccl 12381 |
. . 3
⊢ ;;231 ∈ ℕ0 |
22 | 21, 14 | deccl 12381 |
. 2
⊢ ;;;2311
∈ ℕ0 |
23 | 18, 3 | deccl 12381 |
. . . 4
⊢ ;20 ∈
ℕ0 |
24 | 23, 3 | deccl 12381 |
. . 3
⊢ ;;200 ∈ ℕ0 |
25 | 23, 19 | deccl 12381 |
. . . 4
⊢ ;;203 ∈ ℕ0 |
26 | 25 | nn0zi 12275 |
. . 3
⊢ ;;203 ∈ ℤ |
27 | 10, 3 | deccl 12381 |
. . . 4
⊢ ;90 ∈
ℕ0 |
28 | 27, 18 | deccl 12381 |
. . 3
⊢ ;;902 ∈ ℕ0 |
29 | 1 | 4001lem1 16770 |
. . 3
⊢
((2↑;;200) mod 𝑁) = (;;902
mod 𝑁) |
30 | 24 | nn0cni 12175 |
. . . 4
⊢ ;;200 ∈ ℂ |
31 | | 2cn 11978 |
. . . 4
⊢ 2 ∈
ℂ |
32 | | eqid 2738 |
. . . . 5
⊢ ;;200 = ;;200 |
33 | | eqid 2738 |
. . . . . 6
⊢ ;20 = ;20 |
34 | | 2t2e4 12067 |
. . . . . 6
⊢ (2
· 2) = 4 |
35 | 31 | mul02i 11094 |
. . . . . 6
⊢ (0
· 2) = 0 |
36 | 18, 18, 3, 33, 34, 35 | decmul1 12430 |
. . . . 5
⊢ (;20 · 2) = ;40 |
37 | 18, 23, 3, 32, 36, 35 | decmul1 12430 |
. . . 4
⊢ (;;200 · 2) = ;;400 |
38 | 30, 31, 37 | mulcomli 10915 |
. . 3
⊢ (2
· ;;200) = ;;400 |
39 | | eqid 2738 |
. . . . 5
⊢ ;;;1401 =
;;;1401 |
40 | | 6nn0 12184 |
. . . . . . 7
⊢ 6 ∈
ℕ0 |
41 | 14, 40 | deccl 12381 |
. . . . . 6
⊢ ;16 ∈
ℕ0 |
42 | | eqid 2738 |
. . . . . 6
⊢ ;;400 = ;;400 |
43 | | eqid 2738 |
. . . . . . 7
⊢ ;;140 = ;;140 |
44 | | eqid 2738 |
. . . . . . . 8
⊢ ;14 = ;14 |
45 | | 4p2e6 12056 |
. . . . . . . 8
⊢ (4 + 2) =
6 |
46 | 14, 2, 18, 44, 45 | decaddi 12426 |
. . . . . . 7
⊢ (;14 + 2) = ;16 |
47 | | 00id 11080 |
. . . . . . 7
⊢ (0 + 0) =
0 |
48 | 15, 3, 18, 3, 43, 33, 46, 47 | decadd 12420 |
. . . . . 6
⊢ (;;140 + ;20) = ;;160 |
49 | | eqid 2738 |
. . . . . . 7
⊢ ;40 = ;40 |
50 | 41 | nn0cni 12175 |
. . . . . . . 8
⊢ ;16 ∈ ℂ |
51 | 50 | addid1i 11092 |
. . . . . . 7
⊢ (;16 + 0) = ;16 |
52 | | eqid 2738 |
. . . . . . . 8
⊢ ;;203 = ;;203 |
53 | | ax-1cn 10860 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
54 | 53 | addid1i 11092 |
. . . . . . . . 9
⊢ (1 + 0) =
1 |
55 | 14 | dec0h 12388 |
. . . . . . . . 9
⊢ 1 = ;01 |
56 | 54, 55 | eqtri 2766 |
. . . . . . . 8
⊢ (1 + 0) =
;01 |
57 | 53 | addid2i 11093 |
. . . . . . . . . 10
⊢ (0 + 1) =
1 |
58 | 57, 14 | eqeltri 2835 |
. . . . . . . . 9
⊢ (0 + 1)
∈ ℕ0 |
59 | | 4cn 11988 |
. . . . . . . . . 10
⊢ 4 ∈
ℂ |
60 | | 4t2e8 12071 |
. . . . . . . . . 10
⊢ (4
· 2) = 8 |
61 | 59, 31, 60 | mulcomli 10915 |
. . . . . . . . 9
⊢ (2
· 4) = 8 |
62 | 59 | mul02i 11094 |
. . . . . . . . . . 11
⊢ (0
· 4) = 0 |
63 | 62, 57 | oveq12i 7267 |
. . . . . . . . . 10
⊢ ((0
· 4) + (0 + 1)) = (0 + 1) |
64 | 63, 57 | eqtri 2766 |
. . . . . . . . 9
⊢ ((0
· 4) + (0 + 1)) = 1 |
65 | 18, 3, 58, 33, 2, 61, 64 | decrmanc 12423 |
. . . . . . . 8
⊢ ((;20 · 4) + (0 + 1)) = ;81 |
66 | | 2p1e3 12045 |
. . . . . . . . 9
⊢ (2 + 1) =
3 |
67 | | 3cn 11984 |
. . . . . . . . . 10
⊢ 3 ∈
ℂ |
68 | | 4t3e12 12464 |
. . . . . . . . . 10
⊢ (4
· 3) = ;12 |
69 | 59, 67, 68 | mulcomli 10915 |
. . . . . . . . 9
⊢ (3
· 4) = ;12 |
70 | 14, 18, 66, 69 | decsuc 12397 |
. . . . . . . 8
⊢ ((3
· 4) + 1) = ;13 |
71 | 23, 19, 3, 14, 52, 56, 2, 19, 14, 65, 70 | decmac 12418 |
. . . . . . 7
⊢ ((;;203 · 4) + (1 + 0)) = ;;813 |
72 | 25 | nn0cni 12175 |
. . . . . . . . . 10
⊢ ;;203 ∈ ℂ |
73 | 72 | mul01i 11095 |
. . . . . . . . 9
⊢ (;;203 · 0) = 0 |
74 | 73 | oveq1i 7265 |
. . . . . . . 8
⊢ ((;;203 · 0) + 6) = (0 + 6) |
75 | | 6cn 11994 |
. . . . . . . . 9
⊢ 6 ∈
ℂ |
76 | 75 | addid2i 11093 |
. . . . . . . 8
⊢ (0 + 6) =
6 |
77 | 40 | dec0h 12388 |
. . . . . . . 8
⊢ 6 = ;06 |
78 | 74, 76, 77 | 3eqtri 2770 |
. . . . . . 7
⊢ ((;;203 · 0) + 6) = ;06 |
79 | 2, 3, 14, 40, 49, 51, 25, 40, 3, 71, 78 | decma2c 12419 |
. . . . . 6
⊢ ((;;203 · ;40) + (;16 + 0)) = ;;;8136 |
80 | 73 | oveq1i 7265 |
. . . . . . 7
⊢ ((;;203 · 0) + 0) = (0 + 0) |
81 | 3 | dec0h 12388 |
. . . . . . 7
⊢ 0 = ;00 |
82 | 80, 47, 81 | 3eqtri 2770 |
. . . . . 6
⊢ ((;;203 · 0) + 0) = ;00 |
83 | 4, 3, 41, 3, 42, 48, 25, 3, 3, 79, 82 | decma2c 12419 |
. . . . 5
⊢ ((;;203 · ;;400) +
(;;140 + ;20)) = ;;;;81360 |
84 | 31 | mulid1i 10910 |
. . . . . . 7
⊢ (2
· 1) = 2 |
85 | 53 | mul02i 11094 |
. . . . . . 7
⊢ (0
· 1) = 0 |
86 | 14, 18, 3, 33, 84, 85 | decmul1 12430 |
. . . . . 6
⊢ (;20 · 1) = ;20 |
87 | 67 | mulid1i 10910 |
. . . . . . . 8
⊢ (3
· 1) = 3 |
88 | 87 | oveq1i 7265 |
. . . . . . 7
⊢ ((3
· 1) + 1) = (3 + 1) |
89 | | 3p1e4 12048 |
. . . . . . 7
⊢ (3 + 1) =
4 |
90 | 88, 89 | eqtri 2766 |
. . . . . 6
⊢ ((3
· 1) + 1) = 4 |
91 | 23, 19, 14, 52, 14, 86, 90 | decrmanc 12423 |
. . . . 5
⊢ ((;;203 · 1) + 1) = ;;204 |
92 | 5, 14, 16, 14, 1, 39, 25, 2, 23, 83, 91 | decma2c 12419 |
. . . 4
⊢ ((;;203 · 𝑁) + ;;;1401) = ;;;;;813604 |
93 | | eqid 2738 |
. . . . 5
⊢ ;;902 = ;;902 |
94 | | 8nn0 12186 |
. . . . . . 7
⊢ 8 ∈
ℕ0 |
95 | 14, 94 | deccl 12381 |
. . . . . 6
⊢ ;18 ∈
ℕ0 |
96 | 95, 3 | deccl 12381 |
. . . . 5
⊢ ;;180 ∈ ℕ0 |
97 | | eqid 2738 |
. . . . . 6
⊢ ;90 = ;90 |
98 | | eqid 2738 |
. . . . . 6
⊢ ;;180 = ;;180 |
99 | 95 | nn0cni 12175 |
. . . . . . . 8
⊢ ;18 ∈ ℂ |
100 | 99 | addid1i 11092 |
. . . . . . 7
⊢ (;18 + 0) = ;18 |
101 | | 1p2e3 12046 |
. . . . . . . . 9
⊢ (1 + 2) =
3 |
102 | 101, 19 | eqeltri 2835 |
. . . . . . . 8
⊢ (1 + 2)
∈ ℕ0 |
103 | | 9t9e81 12495 |
. . . . . . . 8
⊢ (9
· 9) = ;81 |
104 | | 9cn 12003 |
. . . . . . . . . . 11
⊢ 9 ∈
ℂ |
105 | 104 | mul02i 11094 |
. . . . . . . . . 10
⊢ (0
· 9) = 0 |
106 | 105, 101 | oveq12i 7267 |
. . . . . . . . 9
⊢ ((0
· 9) + (1 + 2)) = (0 + 3) |
107 | 67 | addid2i 11093 |
. . . . . . . . 9
⊢ (0 + 3) =
3 |
108 | 106, 107 | eqtri 2766 |
. . . . . . . 8
⊢ ((0
· 9) + (1 + 2)) = 3 |
109 | 10, 3, 102, 97, 10, 103, 108 | decrmanc 12423 |
. . . . . . 7
⊢ ((;90 · 9) + (1 + 2)) = ;;813 |
110 | | 9t2e18 12488 |
. . . . . . . . 9
⊢ (9
· 2) = ;18 |
111 | 104, 31, 110 | mulcomli 10915 |
. . . . . . . 8
⊢ (2
· 9) = ;18 |
112 | | 1p1e2 12028 |
. . . . . . . 8
⊢ (1 + 1) =
2 |
113 | | 8p8e16 12452 |
. . . . . . . 8
⊢ (8 + 8) =
;16 |
114 | 14, 94, 94, 111, 112, 40, 113 | decaddci 12427 |
. . . . . . 7
⊢ ((2
· 9) + 8) = ;26 |
115 | 27, 18, 14, 94, 93, 100, 10, 40, 18, 109, 114 | decmac 12418 |
. . . . . 6
⊢ ((;;902 · 9) + (;18 + 0)) = ;;;8136 |
116 | 28 | nn0cni 12175 |
. . . . . . . . 9
⊢ ;;902 ∈ ℂ |
117 | 116 | mul01i 11095 |
. . . . . . . 8
⊢ (;;902 · 0) = 0 |
118 | 117 | oveq1i 7265 |
. . . . . . 7
⊢ ((;;902 · 0) + 0) = (0 + 0) |
119 | 118, 47, 81 | 3eqtri 2770 |
. . . . . 6
⊢ ((;;902 · 0) + 0) = ;00 |
120 | 10, 3, 95, 3, 97, 98, 28, 3, 3, 115, 119 | decma2c 12419 |
. . . . 5
⊢ ((;;902 · ;90) + ;;180) =
;;;;81360 |
121 | 18, 10, 3, 97, 110, 35 | decmul1 12430 |
. . . . . 6
⊢ (;90 · 2) = ;;180 |
122 | 18, 27, 18, 93, 121, 34 | decmul1 12430 |
. . . . 5
⊢ (;;902 · 2) = ;;;1804 |
123 | 28, 27, 18, 93, 2, 96, 120, 122 | decmul2c 12432 |
. . . 4
⊢ (;;902 · ;;902) =
;;;;;813604 |
124 | 92, 123 | eqtr4i 2769 |
. . 3
⊢ ((;;203 · 𝑁) + ;;;1401) = (;;902
· ;;902) |
125 | 8, 9, 24, 26, 28, 17, 29, 38, 124 | mod2xi 16698 |
. 2
⊢
((2↑;;400) mod 𝑁) = (;;;1401 mod 𝑁) |
126 | 5 | nn0cni 12175 |
. . 3
⊢ ;;400 ∈ ℂ |
127 | 18, 2, 3, 49, 60, 35 | decmul1 12430 |
. . . 4
⊢ (;40 · 2) = ;80 |
128 | 18, 4, 3, 42, 127, 35 | decmul1 12430 |
. . 3
⊢ (;;400 · 2) = ;;800 |
129 | 126, 31, 128 | mulcomli 10915 |
. 2
⊢ (2
· ;;400) = ;;800 |
130 | | eqid 2738 |
. . . 4
⊢ ;;;2311 =
;;;2311 |
131 | 18, 94 | deccl 12381 |
. . . . 5
⊢ ;28 ∈
ℕ0 |
132 | | eqid 2738 |
. . . . . 6
⊢ ;;231 = ;;231 |
133 | | eqid 2738 |
. . . . . 6
⊢ ;49 = ;49 |
134 | | 7nn0 12185 |
. . . . . . 7
⊢ 7 ∈
ℕ0 |
135 | | 7p1e8 12052 |
. . . . . . 7
⊢ (7 + 1) =
8 |
136 | | eqid 2738 |
. . . . . . . 8
⊢ ;23 = ;23 |
137 | | 4p3e7 12057 |
. . . . . . . . 9
⊢ (4 + 3) =
7 |
138 | 59, 67, 137 | addcomli 11097 |
. . . . . . . 8
⊢ (3 + 4) =
7 |
139 | 18, 19, 2, 136, 138 | decaddi 12426 |
. . . . . . 7
⊢ (;23 + 4) = ;27 |
140 | 18, 134, 135, 139 | decsuc 12397 |
. . . . . 6
⊢ ((;23 + 4) + 1) = ;28 |
141 | | 9p1e10 12368 |
. . . . . . 7
⊢ (9 + 1) =
;10 |
142 | 104, 53, 141 | addcomli 11097 |
. . . . . 6
⊢ (1 + 9) =
;10 |
143 | 20, 14, 2, 10, 132, 133, 140, 142 | decaddc2 12422 |
. . . . 5
⊢ (;;231 + ;49) = ;;280 |
144 | 131 | nn0cni 12175 |
. . . . . . 7
⊢ ;28 ∈ ℂ |
145 | 144 | addid1i 11092 |
. . . . . 6
⊢ (;28 + 0) = ;28 |
146 | 31 | addid1i 11092 |
. . . . . . . 8
⊢ (2 + 0) =
2 |
147 | 146, 18 | eqeltri 2835 |
. . . . . . 7
⊢ (2 + 0)
∈ ℕ0 |
148 | | eqid 2738 |
. . . . . . 7
⊢ ;;490 = ;;490 |
149 | | 4t4e16 12465 |
. . . . . . . . 9
⊢ (4
· 4) = ;16 |
150 | | 6p3e9 12063 |
. . . . . . . . 9
⊢ (6 + 3) =
9 |
151 | 14, 40, 19, 149, 150 | decaddi 12426 |
. . . . . . . 8
⊢ ((4
· 4) + 3) = ;19 |
152 | | 9t4e36 12490 |
. . . . . . . 8
⊢ (9
· 4) = ;36 |
153 | 2, 2, 10, 133, 40, 19, 151, 152 | decmul1c 12431 |
. . . . . . 7
⊢ (;49 · 4) = ;;196 |
154 | 62, 146 | oveq12i 7267 |
. . . . . . . 8
⊢ ((0
· 4) + (2 + 0)) = (0 + 2) |
155 | 31 | addid2i 11093 |
. . . . . . . 8
⊢ (0 + 2) =
2 |
156 | 154, 155 | eqtri 2766 |
. . . . . . 7
⊢ ((0
· 4) + (2 + 0)) = 2 |
157 | 11, 3, 147, 148, 2, 153, 156 | decrmanc 12423 |
. . . . . 6
⊢ ((;;490 · 4) + (2 + 0)) = ;;;1962 |
158 | 12 | nn0cni 12175 |
. . . . . . . . 9
⊢ ;;490 ∈ ℂ |
159 | 158 | mul01i 11095 |
. . . . . . . 8
⊢ (;;490 · 0) = 0 |
160 | 159 | oveq1i 7265 |
. . . . . . 7
⊢ ((;;490 · 0) + 8) = (0 + 8) |
161 | | 8cn 12000 |
. . . . . . . 8
⊢ 8 ∈
ℂ |
162 | 161 | addid2i 11093 |
. . . . . . 7
⊢ (0 + 8) =
8 |
163 | 94 | dec0h 12388 |
. . . . . . 7
⊢ 8 = ;08 |
164 | 160, 162,
163 | 3eqtri 2770 |
. . . . . 6
⊢ ((;;490 · 0) + 8) = ;08 |
165 | 2, 3, 18, 94, 49, 145, 12, 94, 3, 157, 164 | decma2c 12419 |
. . . . 5
⊢ ((;;490 · ;40) + (;28 + 0)) = ;;;;19628 |
166 | 159 | oveq1i 7265 |
. . . . . 6
⊢ ((;;490 · 0) + 0) = (0 + 0) |
167 | 166, 47, 81 | 3eqtri 2770 |
. . . . 5
⊢ ((;;490 · 0) + 0) = ;00 |
168 | 4, 3, 131, 3, 42, 143, 12, 3, 3, 165, 167 | decma2c 12419 |
. . . 4
⊢ ((;;490 · ;;400) +
(;;231 + ;49)) = ;;;;;196280 |
169 | 59 | mulid1i 10910 |
. . . . . 6
⊢ (4
· 1) = 4 |
170 | 104 | mulid1i 10910 |
. . . . . 6
⊢ (9
· 1) = 9 |
171 | 14, 2, 10, 133, 169, 170 | decmul1 12430 |
. . . . 5
⊢ (;49 · 1) = ;49 |
172 | 85 | oveq1i 7265 |
. . . . . 6
⊢ ((0
· 1) + 1) = (0 + 1) |
173 | 172, 57 | eqtri 2766 |
. . . . 5
⊢ ((0
· 1) + 1) = 1 |
174 | 11, 3, 14, 148, 14, 171, 173 | decrmanc 12423 |
. . . 4
⊢ ((;;490 · 1) + 1) = ;;491 |
175 | 5, 14, 21, 14, 1, 130, 12, 14, 11, 168, 174 | decma2c 12419 |
. . 3
⊢ ((;;490 · 𝑁) + ;;;2311) = ;;;;;;1962801 |
176 | 15 | nn0cni 12175 |
. . . . . . 7
⊢ ;14 ∈ ℂ |
177 | 176 | addid1i 11092 |
. . . . . 6
⊢ (;14 + 0) = ;14 |
178 | | 5nn0 12183 |
. . . . . . . 8
⊢ 5 ∈
ℕ0 |
179 | 178, 40 | deccl 12381 |
. . . . . . 7
⊢ ;56 ∈
ℕ0 |
180 | 179, 3 | deccl 12381 |
. . . . . 6
⊢ ;;560 ∈ ℕ0 |
181 | | eqid 2738 |
. . . . . . . 8
⊢ ;;560 = ;;560 |
182 | 179 | nn0cni 12175 |
. . . . . . . . 9
⊢ ;56 ∈ ℂ |
183 | 182 | addid2i 11093 |
. . . . . . . 8
⊢ (0 +
;56) = ;56 |
184 | 3, 14, 179, 3, 55, 181, 183, 54 | decadd 12420 |
. . . . . . 7
⊢ (1 +
;;560) = ;;561 |
185 | 182 | addid1i 11092 |
. . . . . . . 8
⊢ (;56 + 0) = ;56 |
186 | | 5cn 11991 |
. . . . . . . . . . 11
⊢ 5 ∈
ℂ |
187 | 186 | addid1i 11092 |
. . . . . . . . . 10
⊢ (5 + 0) =
5 |
188 | 187, 178 | eqeltri 2835 |
. . . . . . . . 9
⊢ (5 + 0)
∈ ℕ0 |
189 | 53 | mulid1i 10910 |
. . . . . . . . 9
⊢ (1
· 1) = 1 |
190 | 169, 187 | oveq12i 7267 |
. . . . . . . . . 10
⊢ ((4
· 1) + (5 + 0)) = (4 + 5) |
191 | | 5p4e9 12061 |
. . . . . . . . . . 11
⊢ (5 + 4) =
9 |
192 | 186, 59, 191 | addcomli 11097 |
. . . . . . . . . 10
⊢ (4 + 5) =
9 |
193 | 190, 192 | eqtri 2766 |
. . . . . . . . 9
⊢ ((4
· 1) + (5 + 0)) = 9 |
194 | 14, 2, 188, 44, 14, 189, 193 | decrmanc 12423 |
. . . . . . . 8
⊢ ((;14 · 1) + (5 + 0)) = ;19 |
195 | 85 | oveq1i 7265 |
. . . . . . . . 9
⊢ ((0
· 1) + 6) = (0 + 6) |
196 | 195, 76, 77 | 3eqtri 2770 |
. . . . . . . 8
⊢ ((0
· 1) + 6) = ;06 |
197 | 15, 3, 178, 40, 43, 185, 14, 40, 3, 194, 196 | decmac 12418 |
. . . . . . 7
⊢ ((;;140 · 1) + (;56 + 0)) = ;;196 |
198 | 189 | oveq1i 7265 |
. . . . . . . 8
⊢ ((1
· 1) + 1) = (1 + 1) |
199 | 18 | dec0h 12388 |
. . . . . . . 8
⊢ 2 = ;02 |
200 | 198, 112,
199 | 3eqtri 2770 |
. . . . . . 7
⊢ ((1
· 1) + 1) = ;02 |
201 | 16, 14, 179, 14, 39, 184, 14, 18, 3, 197, 200 | decmac 12418 |
. . . . . 6
⊢ ((;;;1401
· 1) + (1 + ;;560)) = ;;;1962 |
202 | 59 | mulid2i 10911 |
. . . . . . . . . . . 12
⊢ (1
· 4) = 4 |
203 | 202 | oveq1i 7265 |
. . . . . . . . . . 11
⊢ ((1
· 4) + 1) = (4 + 1) |
204 | | 4p1e5 12049 |
. . . . . . . . . . 11
⊢ (4 + 1) =
5 |
205 | 203, 204 | eqtri 2766 |
. . . . . . . . . 10
⊢ ((1
· 4) + 1) = 5 |
206 | 2, 14, 2, 44, 40, 14, 205, 149 | decmul1c 12431 |
. . . . . . . . 9
⊢ (;14 · 4) = ;56 |
207 | 75 | addid1i 11092 |
. . . . . . . . 9
⊢ (6 + 0) =
6 |
208 | 178, 40, 3, 206, 207 | decaddi 12426 |
. . . . . . . 8
⊢ ((;14 · 4) + 0) = ;56 |
209 | | 0cn 10898 |
. . . . . . . . 9
⊢ 0 ∈
ℂ |
210 | 59 | mul01i 11095 |
. . . . . . . . . 10
⊢ (4
· 0) = 0 |
211 | 210, 81 | eqtri 2766 |
. . . . . . . . 9
⊢ (4
· 0) = ;00 |
212 | 59, 209, 211 | mulcomli 10915 |
. . . . . . . 8
⊢ (0
· 4) = ;00 |
213 | 2, 15, 3, 43, 3, 3,
208, 212 | decmul1c 12431 |
. . . . . . 7
⊢ (;;140 · 4) = ;;560 |
214 | 202 | oveq1i 7265 |
. . . . . . . 8
⊢ ((1
· 4) + 4) = (4 + 4) |
215 | | 4p4e8 12058 |
. . . . . . . 8
⊢ (4 + 4) =
8 |
216 | 214, 215 | eqtri 2766 |
. . . . . . 7
⊢ ((1
· 4) + 4) = 8 |
217 | 16, 14, 2, 39, 2, 213, 216 | decrmanc 12423 |
. . . . . 6
⊢ ((;;;1401
· 4) + 4) = ;;;5608 |
218 | 14, 2, 14, 2, 44, 177, 17, 94, 180, 201, 217 | decma2c 12419 |
. . . . 5
⊢ ((;;;1401
· ;14) + (;14 + 0)) = ;;;;19628 |
219 | 17 | nn0cni 12175 |
. . . . . . . 8
⊢ ;;;1401
∈ ℂ |
220 | 219 | mul01i 11095 |
. . . . . . 7
⊢ (;;;1401
· 0) = 0 |
221 | 220 | oveq1i 7265 |
. . . . . 6
⊢ ((;;;1401
· 0) + 0) = (0 + 0) |
222 | 221, 47, 81 | 3eqtri 2770 |
. . . . 5
⊢ ((;;;1401
· 0) + 0) = ;00 |
223 | 15, 3, 15, 3, 43, 43, 17, 3, 3, 218, 222 | decma2c 12419 |
. . . 4
⊢ ((;;;1401
· ;;140) + ;;140) =
;;;;;196280 |
224 | 219 | mulid1i 10910 |
. . . 4
⊢ (;;;1401
· 1) = ;;;1401 |
225 | 17, 16, 14, 39, 14, 16, 223, 224 | decmul2c 12432 |
. . 3
⊢ (;;;1401
· ;;;1401)
= ;;;;;;1962801 |
226 | 175, 225 | eqtr4i 2769 |
. 2
⊢ ((;;490 · 𝑁) + ;;;2311) = (;;;1401 · ;;;1401) |
227 | 8, 9, 5, 13, 17, 22, 125, 129, 226 | mod2xi 16698 |
1
⊢
((2↑;;800) mod 𝑁) = (;;;2311 mod 𝑁) |