Proof of Theorem 4001prm
Step | Hyp | Ref
| Expression |
1 | | 5prm 16791 |
. 2
⊢ 5 ∈
ℙ |
2 | | 8nn 12051 |
. . . 4
⊢ 8 ∈
ℕ |
3 | 2 | decnncl2 12443 |
. . 3
⊢ ;80 ∈ ℕ |
4 | 3 | decnncl2 12443 |
. 2
⊢ ;;800 ∈ ℕ |
5 | | 4nn0 12235 |
. . . . . . . 8
⊢ 4 ∈
ℕ0 |
6 | | 0nn0 12231 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
7 | 5, 6 | deccl 12434 |
. . . . . . 7
⊢ ;40 ∈
ℕ0 |
8 | 7, 6 | deccl 12434 |
. . . . . 6
⊢ ;;400 ∈ ℕ0 |
9 | 8, 6 | deccl 12434 |
. . . . 5
⊢ ;;;4000
∈ ℕ0 |
10 | 9 | nn0cni 12228 |
. . . 4
⊢ ;;;4000
∈ ℂ |
11 | | ax-1cn 10913 |
. . . 4
⊢ 1 ∈
ℂ |
12 | | 4001prm.1 |
. . . . 5
⊢ 𝑁 = ;;;4001 |
13 | 11 | addid2i 11146 |
. . . . . 6
⊢ (0 + 1) =
1 |
14 | | eqid 2739 |
. . . . . 6
⊢ ;;;4000 =
;;;4000 |
15 | 8, 6, 13, 14 | decsuc 12450 |
. . . . 5
⊢ (;;;4000 +
1) = ;;;4001 |
16 | 12, 15 | eqtr4i 2770 |
. . . 4
⊢ 𝑁 = (;;;4000 + 1) |
17 | 10, 11, 16 | mvrraddi 11221 |
. . 3
⊢ (𝑁 − 1) = ;;;4000 |
18 | | 5nn0 12236 |
. . . 4
⊢ 5 ∈
ℕ0 |
19 | | 8nn0 12239 |
. . . . 5
⊢ 8 ∈
ℕ0 |
20 | 19, 6 | deccl 12434 |
. . . 4
⊢ ;80 ∈
ℕ0 |
21 | | eqid 2739 |
. . . 4
⊢ ;;800 = ;;800 |
22 | | eqid 2739 |
. . . . 5
⊢ ;80 = ;80 |
23 | | 8t5e40 12537 |
. . . . 5
⊢ (8
· 5) = ;40 |
24 | | 5cn 12044 |
. . . . . 6
⊢ 5 ∈
ℂ |
25 | 24 | mul02i 11147 |
. . . . 5
⊢ (0
· 5) = 0 |
26 | 18, 19, 6, 22, 23, 25 | decmul1 12483 |
. . . 4
⊢ (;80 · 5) = ;;400 |
27 | 18, 20, 6, 21, 26, 25 | decmul1 12483 |
. . 3
⊢ (;;800 · 5) = ;;;4000 |
28 | 17, 27 | eqtr4i 2770 |
. 2
⊢ (𝑁 − 1) = (;;800 · 5) |
29 | | 1nn0 12232 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
30 | 8, 29 | deccl 12434 |
. . . . . 6
⊢ ;;;4001
∈ ℕ0 |
31 | 12, 30 | eqeltri 2836 |
. . . . 5
⊢ 𝑁 ∈
ℕ0 |
32 | 31 | nn0cni 12228 |
. . . 4
⊢ 𝑁 ∈ ℂ |
33 | | npcan 11213 |
. . . 4
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) |
34 | 32, 11, 33 | mp2an 688 |
. . 3
⊢ ((𝑁 − 1) + 1) = 𝑁 |
35 | 34 | eqcomi 2748 |
. 2
⊢ 𝑁 = ((𝑁 − 1) + 1) |
36 | | 3nn0 12234 |
. . 3
⊢ 3 ∈
ℕ0 |
37 | | 2nn 12029 |
. . 3
⊢ 2 ∈
ℕ |
38 | 36, 37 | decnncl 12439 |
. 2
⊢ ;32 ∈ ℕ |
39 | | 3nn 12035 |
. 2
⊢ 3 ∈
ℕ |
40 | | 2nn0 12233 |
. . . . 5
⊢ 2 ∈
ℕ0 |
41 | 36, 40 | deccl 12434 |
. . . 4
⊢ ;32 ∈
ℕ0 |
42 | 29, 40 | deccl 12434 |
. . . 4
⊢ ;12 ∈
ℕ0 |
43 | | 2p1e3 12098 |
. . . . 5
⊢ (2 + 1) =
3 |
44 | 24 | sqvali 13878 |
. . . . . . 7
⊢
(5↑2) = (5 · 5) |
45 | | 5t5e25 12522 |
. . . . . . 7
⊢ (5
· 5) = ;25 |
46 | 44, 45 | eqtri 2767 |
. . . . . 6
⊢
(5↑2) = ;25 |
47 | | 2cn 12031 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
48 | | 5t2e10 12519 |
. . . . . . . 8
⊢ (5
· 2) = ;10 |
49 | 24, 47, 48 | mulcomli 10968 |
. . . . . . 7
⊢ (2
· 5) = ;10 |
50 | 47 | addid2i 11146 |
. . . . . . 7
⊢ (0 + 2) =
2 |
51 | 29, 6, 40, 49, 50 | decaddi 12479 |
. . . . . 6
⊢ ((2
· 5) + 2) = ;12 |
52 | 18, 40, 18, 46, 18, 40, 51, 45 | decmul1c 12484 |
. . . . 5
⊢
((5↑2) · 5) = ;;125 |
53 | 18, 40, 43, 52 | numexpp1 16760 |
. . . 4
⊢
(5↑3) = ;;125 |
54 | | 6nn0 12237 |
. . . . 5
⊢ 6 ∈
ℕ0 |
55 | 29, 54 | deccl 12434 |
. . . 4
⊢ ;16 ∈
ℕ0 |
56 | | eqid 2739 |
. . . . 5
⊢ ;12 = ;12 |
57 | | eqid 2739 |
. . . . 5
⊢ ;16 = ;16 |
58 | | 7nn0 12238 |
. . . . 5
⊢ 7 ∈
ℕ0 |
59 | | 7cn 12050 |
. . . . . . . 8
⊢ 7 ∈
ℂ |
60 | | 7p1e8 12105 |
. . . . . . . 8
⊢ (7 + 1) =
8 |
61 | 59, 11, 60 | addcomli 11150 |
. . . . . . 7
⊢ (1 + 7) =
8 |
62 | 61, 19 | eqeltri 2836 |
. . . . . 6
⊢ (1 + 7)
∈ ℕ0 |
63 | | eqid 2739 |
. . . . . 6
⊢ ;32 = ;32 |
64 | | 3t1e3 12121 |
. . . . . . . 8
⊢ (3
· 1) = 3 |
65 | 64 | oveq1i 7278 |
. . . . . . 7
⊢ ((3
· 1) + 1) = (3 + 1) |
66 | | 3p1e4 12101 |
. . . . . . 7
⊢ (3 + 1) =
4 |
67 | 65, 66 | eqtri 2767 |
. . . . . 6
⊢ ((3
· 1) + 1) = 4 |
68 | | 2t1e2 12119 |
. . . . . . . 8
⊢ (2
· 1) = 2 |
69 | 68, 61 | oveq12i 7280 |
. . . . . . 7
⊢ ((2
· 1) + (1 + 7)) = (2 + 8) |
70 | | 8cn 12053 |
. . . . . . . 8
⊢ 8 ∈
ℂ |
71 | | 8p2e10 12499 |
. . . . . . . 8
⊢ (8 + 2) =
;10 |
72 | 70, 47, 71 | addcomli 11150 |
. . . . . . 7
⊢ (2 + 8) =
;10 |
73 | 69, 72 | eqtri 2767 |
. . . . . 6
⊢ ((2
· 1) + (1 + 7)) = ;10 |
74 | 36, 40, 62, 63, 29, 6, 29, 67, 73 | decrmac 12477 |
. . . . 5
⊢ ((;32 · 1) + (1 + 7)) = ;40 |
75 | | 3t2e6 12122 |
. . . . . . . 8
⊢ (3
· 2) = 6 |
76 | 75 | oveq1i 7278 |
. . . . . . 7
⊢ ((3
· 2) + 1) = (6 + 1) |
77 | | 6p1e7 12104 |
. . . . . . 7
⊢ (6 + 1) =
7 |
78 | 76, 77 | eqtri 2767 |
. . . . . 6
⊢ ((3
· 2) + 1) = 7 |
79 | | 2t2e4 12120 |
. . . . . . . 8
⊢ (2
· 2) = 4 |
80 | 79 | oveq1i 7278 |
. . . . . . 7
⊢ ((2
· 2) + 6) = (4 + 6) |
81 | | 6cn 12047 |
. . . . . . . 8
⊢ 6 ∈
ℂ |
82 | | 4cn 12041 |
. . . . . . . 8
⊢ 4 ∈
ℂ |
83 | | 6p4e10 12491 |
. . . . . . . 8
⊢ (6 + 4) =
;10 |
84 | 81, 82, 83 | addcomli 11150 |
. . . . . . 7
⊢ (4 + 6) =
;10 |
85 | 80, 84 | eqtri 2767 |
. . . . . 6
⊢ ((2
· 2) + 6) = ;10 |
86 | 36, 40, 54, 63, 40, 6, 29, 78, 85 | decrmac 12477 |
. . . . 5
⊢ ((;32 · 2) + 6) = ;70 |
87 | 29, 40, 29, 54, 56, 57, 41, 6, 58, 74, 86 | decma2c 12472 |
. . . 4
⊢ ((;32 · ;12) + ;16) = ;;400 |
88 | | 5p1e6 12103 |
. . . . . 6
⊢ (5 + 1) =
6 |
89 | | 3cn 12037 |
. . . . . . 7
⊢ 3 ∈
ℂ |
90 | | 5t3e15 12520 |
. . . . . . 7
⊢ (5
· 3) = ;15 |
91 | 24, 89, 90 | mulcomli 10968 |
. . . . . 6
⊢ (3
· 5) = ;15 |
92 | 29, 18, 88, 91 | decsuc 12450 |
. . . . 5
⊢ ((3
· 5) + 1) = ;16 |
93 | 18, 36, 40, 63, 6, 29, 92, 49 | decmul1c 12484 |
. . . 4
⊢ (;32 · 5) = ;;160 |
94 | 41, 42, 18, 53, 6, 55, 87, 93 | decmul2c 12485 |
. . 3
⊢ (;32 · (5↑3)) = ;;;4000 |
95 | 17, 94 | eqtr4i 2770 |
. 2
⊢ (𝑁 − 1) = (;32 ·
(5↑3)) |
96 | | 2lt10 12557 |
. . . 4
⊢ 2 <
;10 |
97 | | 1nn 11967 |
. . . . 5
⊢ 1 ∈
ℕ |
98 | | 3lt10 12556 |
. . . . 5
⊢ 3 <
;10 |
99 | 97, 40, 36, 98 | declti 12457 |
. . . 4
⊢ 3 <
;12 |
100 | 36, 42, 40, 18, 96, 99 | decltc 12448 |
. . 3
⊢ ;32 < ;;125 |
101 | 100, 53 | breqtrri 5105 |
. 2
⊢ ;32 < (5↑3) |
102 | 12 | 4001lem3 16825 |
. 2
⊢
((2↑(𝑁 −
1)) mod 𝑁) = (1 mod 𝑁) |
103 | 12 | 4001lem4 16826 |
. 2
⊢
(((2↑;;800) − 1) gcd 𝑁) = 1 |
104 | 1, 4, 28, 35, 38, 39, 37, 95, 101, 102, 103 | pockthi 16589 |
1
⊢ 𝑁 ∈ ℙ |