| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8p1e9 | Structured version Visualization version GIF version | ||
| Description: 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8p1e9 | ⊢ (8 + 1) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12232 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (8 + 1) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 + caddc 11047 8c8 12223 9c9 12224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-9 12232 |
| This theorem is referenced by: cos2bnd 16132 19prm 17064 139prm 17070 317prm 17072 1259lem2 17078 1259lem4 17080 1259lem5 17081 1259prm 17082 2503lem1 17083 2503lem2 17084 2503lem3 17085 4001lem1 17087 quartlem1 26800 log2ub 26892 hgt750lem2 34636 lcmineqlem 42033 3lexlogpow5ineq2 42036 aks4d1p1 42057 sum9cubes 42653 3cubeslem3l 42667 3cubeslem3r 42668 fmtno5lem3 47549 fmtno5lem4 47550 fmtno4prmfac 47566 fmtno5fac 47576 139prmALT 47590 nfermltl8rev 47736 evengpop3 47792 bgoldbtbndlem1 47799 |
| Copyright terms: Public domain | W3C validator |