![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8p1e9 | Structured version Visualization version GIF version |
Description: 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
8p1e9 | ⊢ (8 + 1) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 12363 | . 2 ⊢ 9 = (8 + 1) | |
2 | 1 | eqcomi 2749 | 1 ⊢ (8 + 1) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 1c1 11185 + caddc 11187 8c8 12354 9c9 12355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-9 12363 |
This theorem is referenced by: cos2bnd 16236 19prm 17165 139prm 17171 317prm 17173 1259lem2 17179 1259lem4 17181 1259lem5 17182 1259prm 17183 2503lem1 17184 2503lem2 17185 2503lem3 17186 4001lem1 17188 quartlem1 26918 log2ub 27010 hgt750lem2 34629 lcmineqlem 42009 3lexlogpow5ineq2 42012 aks4d1p1 42033 sum9cubes 42627 3cubeslem3l 42642 3cubeslem3r 42643 fmtno5lem3 47429 fmtno5lem4 47430 fmtno4prmfac 47446 fmtno5fac 47456 139prmALT 47470 nfermltl8rev 47616 evengpop3 47672 bgoldbtbndlem1 47679 |
Copyright terms: Public domain | W3C validator |