Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 8p1e9 | Structured version Visualization version GIF version |
Description: 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
8p1e9 | ⊢ (8 + 1) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 11973 | . 2 ⊢ 9 = (8 + 1) | |
2 | 1 | eqcomi 2747 | 1 ⊢ (8 + 1) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 1c1 10803 + caddc 10805 8c8 11964 9c9 11965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-9 11973 |
This theorem is referenced by: cos2bnd 15825 19prm 16747 139prm 16753 317prm 16755 1259lem2 16761 1259lem4 16763 1259lem5 16764 1259prm 16765 2503lem1 16766 2503lem2 16767 2503lem3 16768 4001lem1 16770 quartlem1 25912 log2ub 26004 hgt750lem2 32532 lcmineqlem 39988 3lexlogpow5ineq2 39991 aks4d1p1 40012 3cubeslem3l 40424 3cubeslem3r 40425 fmtno5lem3 44895 fmtno5lem4 44896 fmtno4prmfac 44912 fmtno5fac 44922 139prmALT 44936 nfermltl8rev 45082 evengpop3 45138 bgoldbtbndlem1 45145 |
Copyright terms: Public domain | W3C validator |