| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8p1e9 | Structured version Visualization version GIF version | ||
| Description: 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8p1e9 | ⊢ (8 + 1) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12198 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (8 + 1) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 1c1 11010 + caddc 11012 8c8 12189 9c9 12190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-9 12198 |
| This theorem is referenced by: cos2bnd 16097 19prm 17029 139prm 17035 317prm 17037 1259lem2 17043 1259lem4 17045 1259lem5 17046 1259prm 17047 2503lem1 17048 2503lem2 17049 2503lem3 17050 4001lem1 17052 quartlem1 26765 log2ub 26857 hgt750lem2 34626 lcmineqlem 42035 3lexlogpow5ineq2 42038 aks4d1p1 42059 sum9cubes 42655 3cubeslem3l 42669 3cubeslem3r 42670 fmtno5lem3 47549 fmtno5lem4 47550 fmtno4prmfac 47566 fmtno5fac 47576 139prmALT 47590 nfermltl8rev 47736 evengpop3 47792 bgoldbtbndlem1 47799 |
| Copyright terms: Public domain | W3C validator |