| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8p1e9 | Structured version Visualization version GIF version | ||
| Description: 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8p1e9 | ⊢ (8 + 1) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12256 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (8 + 1) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 1c1 11069 + caddc 11071 8c8 12247 9c9 12248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-9 12256 |
| This theorem is referenced by: cos2bnd 16156 19prm 17088 139prm 17094 317prm 17096 1259lem2 17102 1259lem4 17104 1259lem5 17105 1259prm 17106 2503lem1 17107 2503lem2 17108 2503lem3 17109 4001lem1 17111 quartlem1 26767 log2ub 26859 hgt750lem2 34643 lcmineqlem 42040 3lexlogpow5ineq2 42043 aks4d1p1 42064 sum9cubes 42660 3cubeslem3l 42674 3cubeslem3r 42675 fmtno5lem3 47556 fmtno5lem4 47557 fmtno4prmfac 47573 fmtno5fac 47583 139prmALT 47597 nfermltl8rev 47743 evengpop3 47799 bgoldbtbndlem1 47806 |
| Copyright terms: Public domain | W3C validator |