| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8p1e9 | Structured version Visualization version GIF version | ||
| Description: 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8p1e9 | ⊢ (8 + 1) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12195 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 1 | eqcomi 2740 | 1 ⊢ (8 + 1) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 1c1 11007 + caddc 11009 8c8 12186 9c9 12187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-9 12195 |
| This theorem is referenced by: cos2bnd 16097 19prm 17029 139prm 17035 317prm 17037 1259lem2 17043 1259lem4 17045 1259lem5 17046 1259prm 17047 2503lem1 17048 2503lem2 17049 2503lem3 17050 4001lem1 17052 quartlem1 26794 log2ub 26886 hgt750lem2 34665 lcmineqlem 42155 3lexlogpow5ineq2 42158 aks4d1p1 42179 sum9cubes 42775 3cubeslem3l 42789 3cubeslem3r 42790 fmtno5lem3 47665 fmtno5lem4 47666 fmtno4prmfac 47682 fmtno5fac 47692 139prmALT 47706 nfermltl8rev 47852 evengpop3 47908 bgoldbtbndlem1 47915 |
| Copyright terms: Public domain | W3C validator |