| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8p1e9 | Structured version Visualization version GIF version | ||
| Description: 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8p1e9 | ⊢ (8 + 1) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12319 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 1 | eqcomi 2743 | 1 ⊢ (8 + 1) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 (class class class)co 7414 1c1 11139 + caddc 11141 8c8 12310 9c9 12311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-9 12319 |
| This theorem is referenced by: cos2bnd 16207 19prm 17138 139prm 17144 317prm 17146 1259lem2 17152 1259lem4 17154 1259lem5 17155 1259prm 17156 2503lem1 17157 2503lem2 17158 2503lem3 17159 4001lem1 17161 quartlem1 26855 log2ub 26947 hgt750lem2 34608 lcmineqlem 41994 3lexlogpow5ineq2 41997 aks4d1p1 42018 sum9cubes 42627 3cubeslem3l 42642 3cubeslem3r 42643 fmtno5lem3 47488 fmtno5lem4 47489 fmtno4prmfac 47505 fmtno5fac 47515 139prmALT 47529 nfermltl8rev 47675 evengpop3 47731 bgoldbtbndlem1 47738 |
| Copyright terms: Public domain | W3C validator |