Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 8p1e9 | Structured version Visualization version GIF version |
Description: 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
8p1e9 | ⊢ (8 + 1) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 12043 | . 2 ⊢ 9 = (8 + 1) | |
2 | 1 | eqcomi 2747 | 1 ⊢ (8 + 1) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7275 1c1 10872 + caddc 10874 8c8 12034 9c9 12035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-9 12043 |
This theorem is referenced by: cos2bnd 15897 19prm 16819 139prm 16825 317prm 16827 1259lem2 16833 1259lem4 16835 1259lem5 16836 1259prm 16837 2503lem1 16838 2503lem2 16839 2503lem3 16840 4001lem1 16842 quartlem1 26007 log2ub 26099 hgt750lem2 32632 lcmineqlem 40060 3lexlogpow5ineq2 40063 aks4d1p1 40084 3cubeslem3l 40508 3cubeslem3r 40509 fmtno5lem3 45007 fmtno5lem4 45008 fmtno4prmfac 45024 fmtno5fac 45034 139prmALT 45048 nfermltl8rev 45194 evengpop3 45250 bgoldbtbndlem1 45257 |
Copyright terms: Public domain | W3C validator |