![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8p1e9 | Structured version Visualization version GIF version |
Description: 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
8p1e9 | ⊢ (8 + 1) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 12334 | . 2 ⊢ 9 = (8 + 1) | |
2 | 1 | eqcomi 2744 | 1 ⊢ (8 + 1) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7431 1c1 11154 + caddc 11156 8c8 12325 9c9 12326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-9 12334 |
This theorem is referenced by: cos2bnd 16221 19prm 17152 139prm 17158 317prm 17160 1259lem2 17166 1259lem4 17168 1259lem5 17169 1259prm 17170 2503lem1 17171 2503lem2 17172 2503lem3 17173 4001lem1 17175 quartlem1 26915 log2ub 27007 hgt750lem2 34646 lcmineqlem 42034 3lexlogpow5ineq2 42037 aks4d1p1 42058 sum9cubes 42659 3cubeslem3l 42674 3cubeslem3r 42675 fmtno5lem3 47480 fmtno5lem4 47481 fmtno4prmfac 47497 fmtno5fac 47507 139prmALT 47521 nfermltl8rev 47667 evengpop3 47723 bgoldbtbndlem1 47730 |
Copyright terms: Public domain | W3C validator |