Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 8p1e9 | Structured version Visualization version GIF version |
Description: 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
8p1e9 | ⊢ (8 + 1) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 12136 | . 2 ⊢ 9 = (8 + 1) | |
2 | 1 | eqcomi 2745 | 1 ⊢ (8 + 1) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 (class class class)co 7329 1c1 10965 + caddc 10967 8c8 12127 9c9 12128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-cleq 2728 df-9 12136 |
This theorem is referenced by: cos2bnd 15988 19prm 16908 139prm 16914 317prm 16916 1259lem2 16922 1259lem4 16924 1259lem5 16925 1259prm 16926 2503lem1 16927 2503lem2 16928 2503lem3 16929 4001lem1 16931 quartlem1 26105 log2ub 26197 hgt750lem2 32845 lcmineqlem 40307 3lexlogpow5ineq2 40310 aks4d1p1 40331 3cubeslem3l 40758 3cubeslem3r 40759 fmtno5lem3 45347 fmtno5lem4 45348 fmtno4prmfac 45364 fmtno5fac 45374 139prmALT 45388 nfermltl8rev 45534 evengpop3 45590 bgoldbtbndlem1 45597 |
Copyright terms: Public domain | W3C validator |