| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8p1e9 | Structured version Visualization version GIF version | ||
| Description: 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8p1e9 | ⊢ (8 + 1) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12315 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 1 | eqcomi 2745 | 1 ⊢ (8 + 1) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7410 1c1 11135 + caddc 11137 8c8 12306 9c9 12307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-9 12315 |
| This theorem is referenced by: cos2bnd 16211 19prm 17142 139prm 17148 317prm 17150 1259lem2 17156 1259lem4 17158 1259lem5 17159 1259prm 17160 2503lem1 17161 2503lem2 17162 2503lem3 17163 4001lem1 17165 quartlem1 26824 log2ub 26916 hgt750lem2 34689 lcmineqlem 42070 3lexlogpow5ineq2 42073 aks4d1p1 42094 sum9cubes 42670 3cubeslem3l 42684 3cubeslem3r 42685 fmtno5lem3 47549 fmtno5lem4 47550 fmtno4prmfac 47566 fmtno5fac 47576 139prmALT 47590 nfermltl8rev 47736 evengpop3 47792 bgoldbtbndlem1 47799 |
| Copyright terms: Public domain | W3C validator |