| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7t4e28 | Structured version Visualization version GIF version | ||
| Description: 7 times 4 equals 28. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 7t4e28 | ⊢ (7 · 4) = ;28 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7nn0 12471 | . 2 ⊢ 7 ∈ ℕ0 | |
| 2 | 3nn0 12467 | . 2 ⊢ 3 ∈ ℕ0 | |
| 3 | df-4 12258 | . 2 ⊢ 4 = (3 + 1) | |
| 4 | 7t3e21 12766 | . 2 ⊢ (7 · 3) = ;21 | |
| 5 | 2nn0 12466 | . . 3 ⊢ 2 ∈ ℕ0 | |
| 6 | 1nn0 12465 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 7 | eqid 2730 | . . 3 ⊢ ;21 = ;21 | |
| 8 | 7cn 12287 | . . . 4 ⊢ 7 ∈ ℂ | |
| 9 | ax-1cn 11133 | . . . 4 ⊢ 1 ∈ ℂ | |
| 10 | 7p1e8 12337 | . . . 4 ⊢ (7 + 1) = 8 | |
| 11 | 8, 9, 10 | addcomli 11373 | . . 3 ⊢ (1 + 7) = 8 |
| 12 | 5, 6, 1, 7, 11 | decaddi 12716 | . 2 ⊢ (;21 + 7) = ;28 |
| 13 | 1, 2, 3, 4, 12 | 4t3lem 12753 | 1 ⊢ (7 · 4) = ;28 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 1c1 11076 · cmul 11080 2c2 12248 3c3 12249 4c4 12250 7c7 12253 8c8 12254 ;cdc 12656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-dec 12657 |
| This theorem is referenced by: 7t5e35 12768 83prm 17100 317prm 17103 1259prm 17113 hgt750lem2 34650 3lexlogpow5ineq1 42049 fmtno5faclem1 47584 |
| Copyright terms: Public domain | W3C validator |