Proof of Theorem 4001lem3
Step | Hyp | Ref
| Expression |
1 | | 4001prm.1 |
. . 3
⊢ 𝑁 = ;;;4001 |
2 | | 4nn0 12182 |
. . . . . 6
⊢ 4 ∈
ℕ0 |
3 | | 0nn0 12178 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
4 | 2, 3 | deccl 12381 |
. . . . 5
⊢ ;40 ∈
ℕ0 |
5 | 4, 3 | deccl 12381 |
. . . 4
⊢ ;;400 ∈ ℕ0 |
6 | | 1nn 11914 |
. . . 4
⊢ 1 ∈
ℕ |
7 | 5, 6 | decnncl 12386 |
. . 3
⊢ ;;;4001
∈ ℕ |
8 | 1, 7 | eqeltri 2835 |
. 2
⊢ 𝑁 ∈ ℕ |
9 | | 2nn 11976 |
. 2
⊢ 2 ∈
ℕ |
10 | | 2nn0 12180 |
. . . . 5
⊢ 2 ∈
ℕ0 |
11 | 10, 3 | deccl 12381 |
. . . 4
⊢ ;20 ∈
ℕ0 |
12 | 11, 3 | deccl 12381 |
. . 3
⊢ ;;200 ∈ ℕ0 |
13 | 12, 3 | deccl 12381 |
. 2
⊢ ;;;2000
∈ ℕ0 |
14 | | 0z 12260 |
. 2
⊢ 0 ∈
ℤ |
15 | | 1nn0 12179 |
. 2
⊢ 1 ∈
ℕ0 |
16 | | 10nn0 12384 |
. . . . 5
⊢ ;10 ∈
ℕ0 |
17 | 16, 3 | deccl 12381 |
. . . 4
⊢ ;;100 ∈ ℕ0 |
18 | 17, 3 | deccl 12381 |
. . 3
⊢ ;;;1000
∈ ℕ0 |
19 | | 8nn0 12186 |
. . . . . 6
⊢ 8 ∈
ℕ0 |
20 | 19, 3 | deccl 12381 |
. . . . 5
⊢ ;80 ∈
ℕ0 |
21 | 20, 3 | deccl 12381 |
. . . 4
⊢ ;;800 ∈ ℕ0 |
22 | | 5nn0 12183 |
. . . . . . 7
⊢ 5 ∈
ℕ0 |
23 | 22, 10 | deccl 12381 |
. . . . . 6
⊢ ;52 ∈
ℕ0 |
24 | 23, 15 | deccl 12381 |
. . . . 5
⊢ ;;521 ∈ ℕ0 |
25 | 24 | nn0zi 12275 |
. . . 4
⊢ ;;521 ∈ ℤ |
26 | | 3nn0 12181 |
. . . . . . 7
⊢ 3 ∈
ℕ0 |
27 | 10, 26 | deccl 12381 |
. . . . . 6
⊢ ;23 ∈
ℕ0 |
28 | 27, 15 | deccl 12381 |
. . . . 5
⊢ ;;231 ∈ ℕ0 |
29 | 28, 15 | deccl 12381 |
. . . 4
⊢ ;;;2311
∈ ℕ0 |
30 | | 9nn0 12187 |
. . . . . 6
⊢ 9 ∈
ℕ0 |
31 | 30, 3 | deccl 12381 |
. . . . 5
⊢ ;90 ∈
ℕ0 |
32 | 31, 10 | deccl 12381 |
. . . 4
⊢ ;;902 ∈ ℕ0 |
33 | 1 | 4001lem2 16771 |
. . . 4
⊢
((2↑;;800) mod 𝑁) = (;;;2311 mod 𝑁) |
34 | 1 | 4001lem1 16770 |
. . . 4
⊢
((2↑;;200) mod 𝑁) = (;;902
mod 𝑁) |
35 | | eqid 2738 |
. . . . 5
⊢ ;;800 = ;;800 |
36 | | eqid 2738 |
. . . . 5
⊢ ;;200 = ;;200 |
37 | | eqid 2738 |
. . . . . 6
⊢ ;80 = ;80 |
38 | | eqid 2738 |
. . . . . 6
⊢ ;20 = ;20 |
39 | | 8p2e10 12446 |
. . . . . 6
⊢ (8 + 2) =
;10 |
40 | | 00id 11080 |
. . . . . 6
⊢ (0 + 0) =
0 |
41 | 19, 3, 10, 3, 37, 38, 39, 40 | decadd 12420 |
. . . . 5
⊢ (;80 + ;20) = ;;100 |
42 | 20, 3, 11, 3, 35, 36, 41, 40 | decadd 12420 |
. . . 4
⊢ (;;800 + ;;200) =
;;;1000 |
43 | 15 | dec0h 12388 |
. . . . . 6
⊢ 1 = ;01 |
44 | | eqid 2738 |
. . . . . . 7
⊢ ;;400 = ;;400 |
45 | 23 | nn0cni 12175 |
. . . . . . . 8
⊢ ;52 ∈ ℂ |
46 | 45 | addid2i 11093 |
. . . . . . 7
⊢ (0 +
;52) = ;52 |
47 | | eqid 2738 |
. . . . . . . 8
⊢ ;40 = ;40 |
48 | | 5cn 11991 |
. . . . . . . . . 10
⊢ 5 ∈
ℂ |
49 | 48 | addid1i 11092 |
. . . . . . . . 9
⊢ (5 + 0) =
5 |
50 | 22 | dec0h 12388 |
. . . . . . . . 9
⊢ 5 = ;05 |
51 | 49, 50 | eqtri 2766 |
. . . . . . . 8
⊢ (5 + 0) =
;05 |
52 | 40, 3 | eqeltri 2835 |
. . . . . . . . 9
⊢ (0 + 0)
∈ ℕ0 |
53 | | eqid 2738 |
. . . . . . . . 9
⊢ ;;521 = ;;521 |
54 | | eqid 2738 |
. . . . . . . . . 10
⊢ ;52 = ;52 |
55 | | 5t4e20 12468 |
. . . . . . . . . 10
⊢ (5
· 4) = ;20 |
56 | | 4cn 11988 |
. . . . . . . . . . 11
⊢ 4 ∈
ℂ |
57 | | 2cn 11978 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
58 | | 4t2e8 12071 |
. . . . . . . . . . 11
⊢ (4
· 2) = 8 |
59 | 56, 57, 58 | mulcomli 10915 |
. . . . . . . . . 10
⊢ (2
· 4) = 8 |
60 | 2, 22, 10, 54, 55, 59 | decmul1 12430 |
. . . . . . . . 9
⊢ (;52 · 4) = ;;208 |
61 | 56 | mulid2i 10911 |
. . . . . . . . . . 11
⊢ (1
· 4) = 4 |
62 | 61, 40 | oveq12i 7267 |
. . . . . . . . . 10
⊢ ((1
· 4) + (0 + 0)) = (4 + 0) |
63 | 56 | addid1i 11092 |
. . . . . . . . . 10
⊢ (4 + 0) =
4 |
64 | 62, 63 | eqtri 2766 |
. . . . . . . . 9
⊢ ((1
· 4) + (0 + 0)) = 4 |
65 | 23, 15, 52, 53, 2, 60, 64 | decrmanc 12423 |
. . . . . . . 8
⊢ ((;;521 · 4) + (0 + 0)) = ;;;2084 |
66 | 24 | nn0cni 12175 |
. . . . . . . . . . 11
⊢ ;;521 ∈ ℂ |
67 | 66 | mul01i 11095 |
. . . . . . . . . 10
⊢ (;;521 · 0) = 0 |
68 | 67 | oveq1i 7265 |
. . . . . . . . 9
⊢ ((;;521 · 0) + 5) = (0 + 5) |
69 | 48 | addid2i 11093 |
. . . . . . . . 9
⊢ (0 + 5) =
5 |
70 | 68, 69, 50 | 3eqtri 2770 |
. . . . . . . 8
⊢ ((;;521 · 0) + 5) = ;05 |
71 | 2, 3, 3, 22, 47, 51, 24, 22, 3, 65, 70 | decma2c 12419 |
. . . . . . 7
⊢ ((;;521 · ;40) + (5 + 0)) = ;;;;20845 |
72 | 67 | oveq1i 7265 |
. . . . . . . 8
⊢ ((;;521 · 0) + 2) = (0 + 2) |
73 | 57 | addid2i 11093 |
. . . . . . . 8
⊢ (0 + 2) =
2 |
74 | 10 | dec0h 12388 |
. . . . . . . 8
⊢ 2 = ;02 |
75 | 72, 73, 74 | 3eqtri 2770 |
. . . . . . 7
⊢ ((;;521 · 0) + 2) = ;02 |
76 | 4, 3, 22, 10, 44, 46, 24, 10, 3, 71, 75 | decma2c 12419 |
. . . . . 6
⊢ ((;;521 · ;;400) +
(0 + ;52)) = ;;;;;208452 |
77 | 45 | mulid1i 10910 |
. . . . . . 7
⊢ (;52 · 1) = ;52 |
78 | | ax-1cn 10860 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
79 | 78 | mulid2i 10911 |
. . . . . . . . 9
⊢ (1
· 1) = 1 |
80 | 79 | oveq1i 7265 |
. . . . . . . 8
⊢ ((1
· 1) + 1) = (1 + 1) |
81 | | 1p1e2 12028 |
. . . . . . . 8
⊢ (1 + 1) =
2 |
82 | 80, 81 | eqtri 2766 |
. . . . . . 7
⊢ ((1
· 1) + 1) = 2 |
83 | 23, 15, 15, 53, 15, 77, 82 | decrmanc 12423 |
. . . . . 6
⊢ ((;;521 · 1) + 1) = ;;522 |
84 | 5, 15, 3, 15, 1, 43, 24, 10, 23, 76, 83 | decma2c 12419 |
. . . . 5
⊢ ((;;521 · 𝑁) + 1) = ;;;;;;2084522 |
85 | | eqid 2738 |
. . . . . 6
⊢ ;;902 = ;;902 |
86 | | 6nn0 12184 |
. . . . . . . 8
⊢ 6 ∈
ℕ0 |
87 | 2, 86 | deccl 12381 |
. . . . . . 7
⊢ ;46 ∈
ℕ0 |
88 | 87, 10 | deccl 12381 |
. . . . . 6
⊢ ;;462 ∈ ℕ0 |
89 | | eqid 2738 |
. . . . . . 7
⊢ ;90 = ;90 |
90 | | eqid 2738 |
. . . . . . 7
⊢ ;;462 = ;;462 |
91 | | eqid 2738 |
. . . . . . . 8
⊢ ;;;2311 =
;;;2311 |
92 | 87 | nn0cni 12175 |
. . . . . . . . 9
⊢ ;46 ∈ ℂ |
93 | 92 | addid1i 11092 |
. . . . . . . 8
⊢ (;46 + 0) = ;46 |
94 | | 4p1e5 12049 |
. . . . . . . . . 10
⊢ (4 + 1) =
5 |
95 | 94, 22 | eqeltri 2835 |
. . . . . . . . 9
⊢ (4 + 1)
∈ ℕ0 |
96 | | eqid 2738 |
. . . . . . . . 9
⊢ ;;231 = ;;231 |
97 | | eqid 2738 |
. . . . . . . . . 10
⊢ ;23 = ;23 |
98 | | 9cn 12003 |
. . . . . . . . . . . 12
⊢ 9 ∈
ℂ |
99 | | 9t2e18 12488 |
. . . . . . . . . . . 12
⊢ (9
· 2) = ;18 |
100 | 98, 57, 99 | mulcomli 10915 |
. . . . . . . . . . 11
⊢ (2
· 9) = ;18 |
101 | 15, 19, 10, 100, 81, 39 | decaddci2 12428 |
. . . . . . . . . 10
⊢ ((2
· 9) + 2) = ;20 |
102 | | 7nn0 12185 |
. . . . . . . . . . 11
⊢ 7 ∈
ℕ0 |
103 | | 7p1e8 12052 |
. . . . . . . . . . 11
⊢ (7 + 1) =
8 |
104 | | 3cn 11984 |
. . . . . . . . . . . 12
⊢ 3 ∈
ℂ |
105 | | 9t3e27 12489 |
. . . . . . . . . . . 12
⊢ (9
· 3) = ;27 |
106 | 98, 104, 105 | mulcomli 10915 |
. . . . . . . . . . 11
⊢ (3
· 9) = ;27 |
107 | 10, 102, 103, 106 | decsuc 12397 |
. . . . . . . . . 10
⊢ ((3
· 9) + 1) = ;28 |
108 | 10, 26, 15, 97, 30, 19, 10, 101, 107 | decrmac 12424 |
. . . . . . . . 9
⊢ ((;23 · 9) + 1) = ;;208 |
109 | 98 | mulid2i 10911 |
. . . . . . . . . . 11
⊢ (1
· 9) = 9 |
110 | 109, 94 | oveq12i 7267 |
. . . . . . . . . 10
⊢ ((1
· 9) + (4 + 1)) = (9 + 5) |
111 | | 9p5e14 12456 |
. . . . . . . . . 10
⊢ (9 + 5) =
;14 |
112 | 110, 111 | eqtri 2766 |
. . . . . . . . 9
⊢ ((1
· 9) + (4 + 1)) = ;14 |
113 | 27, 15, 95, 96, 30, 2, 15, 108, 112 | decrmac 12424 |
. . . . . . . 8
⊢ ((;;231 · 9) + (4 + 1)) = ;;;2084 |
114 | 109 | oveq1i 7265 |
. . . . . . . . 9
⊢ ((1
· 9) + 6) = (9 + 6) |
115 | | 9p6e15 12457 |
. . . . . . . . 9
⊢ (9 + 6) =
;15 |
116 | 114, 115 | eqtri 2766 |
. . . . . . . 8
⊢ ((1
· 9) + 6) = ;15 |
117 | 28, 15, 2, 86, 91, 93, 30, 22, 15, 113, 116 | decmac 12418 |
. . . . . . 7
⊢ ((;;;2311
· 9) + (;46 + 0)) = ;;;;20845 |
118 | 29 | nn0cni 12175 |
. . . . . . . . . 10
⊢ ;;;2311
∈ ℂ |
119 | 118 | mul01i 11095 |
. . . . . . . . 9
⊢ (;;;2311
· 0) = 0 |
120 | 119 | oveq1i 7265 |
. . . . . . . 8
⊢ ((;;;2311
· 0) + 2) = (0 + 2) |
121 | 120, 73, 74 | 3eqtri 2770 |
. . . . . . 7
⊢ ((;;;2311
· 0) + 2) = ;02 |
122 | 30, 3, 87, 10, 89, 90, 29, 10, 3, 117, 121 | decma2c 12419 |
. . . . . 6
⊢ ((;;;2311
· ;90) + ;;462) =
;;;;;208452 |
123 | | 2t2e4 12067 |
. . . . . . . . 9
⊢ (2
· 2) = 4 |
124 | | 3t2e6 12069 |
. . . . . . . . 9
⊢ (3
· 2) = 6 |
125 | 10, 10, 26, 97, 123, 124 | decmul1 12430 |
. . . . . . . 8
⊢ (;23 · 2) = ;46 |
126 | 57 | mulid2i 10911 |
. . . . . . . 8
⊢ (1
· 2) = 2 |
127 | 10, 27, 15, 96, 125, 126 | decmul1 12430 |
. . . . . . 7
⊢ (;;231 · 2) = ;;462 |
128 | 10, 28, 15, 91, 127, 126 | decmul1 12430 |
. . . . . 6
⊢ (;;;2311
· 2) = ;;;4622 |
129 | 29, 31, 10, 85, 10, 88, 122, 128 | decmul2c 12432 |
. . . . 5
⊢ (;;;2311
· ;;902) = ;;;;;;2084522 |
130 | 84, 129 | eqtr4i 2769 |
. . . 4
⊢ ((;;521 · 𝑁) + 1) = (;;;2311 · ;;902) |
131 | 8, 9, 21, 25, 29, 15, 12, 32, 33, 34, 42, 130 | modxai 16697 |
. . 3
⊢
((2↑;;;1000) mod 𝑁) = (1 mod 𝑁) |
132 | 18 | nn0cni 12175 |
. . . 4
⊢ ;;;1000
∈ ℂ |
133 | | eqid 2738 |
. . . . 5
⊢ ;;;1000 =
;;;1000 |
134 | | eqid 2738 |
. . . . . 6
⊢ ;;100 = ;;100 |
135 | 10 | dec0u 12387 |
. . . . . 6
⊢ (;10 · 2) = ;20 |
136 | 57 | mul02i 11094 |
. . . . . 6
⊢ (0
· 2) = 0 |
137 | 10, 16, 3, 134, 135, 136 | decmul1 12430 |
. . . . 5
⊢ (;;100 · 2) = ;;200 |
138 | 10, 17, 3, 133, 137, 136 | decmul1 12430 |
. . . 4
⊢ (;;;1000
· 2) = ;;;2000 |
139 | 132, 57, 138 | mulcomli 10915 |
. . 3
⊢ (2
· ;;;1000)
= ;;;2000 |
140 | 8 | nncni 11913 |
. . . . . 6
⊢ 𝑁 ∈ ℂ |
141 | 140 | mul02i 11094 |
. . . . 5
⊢ (0
· 𝑁) =
0 |
142 | 141 | oveq1i 7265 |
. . . 4
⊢ ((0
· 𝑁) + 1) = (0 +
1) |
143 | 78 | addid2i 11093 |
. . . . 5
⊢ (0 + 1) =
1 |
144 | 79, 143 | eqtr4i 2769 |
. . . 4
⊢ (1
· 1) = (0 + 1) |
145 | 142, 144 | eqtr4i 2769 |
. . 3
⊢ ((0
· 𝑁) + 1) = (1
· 1) |
146 | 8, 9, 18, 14, 15, 15, 131, 139, 145 | mod2xi 16698 |
. 2
⊢
((2↑;;;2000) mod 𝑁) = (1 mod 𝑁) |
147 | 13 | nn0cni 12175 |
. . . 4
⊢ ;;;2000
∈ ℂ |
148 | | eqid 2738 |
. . . . 5
⊢ ;;;2000 =
;;;2000 |
149 | 10, 10, 3, 38, 123, 136 | decmul1 12430 |
. . . . . 6
⊢ (;20 · 2) = ;40 |
150 | 10, 11, 3, 36, 149, 136 | decmul1 12430 |
. . . . 5
⊢ (;;200 · 2) = ;;400 |
151 | 10, 12, 3, 148, 150, 136 | decmul1 12430 |
. . . 4
⊢ (;;;2000
· 2) = ;;;4000 |
152 | 147, 57, 151 | mulcomli 10915 |
. . 3
⊢ (2
· ;;;2000)
= ;;;4000 |
153 | 5, 3 | deccl 12381 |
. . . . 5
⊢ ;;;4000
∈ ℕ0 |
154 | 153 | nn0cni 12175 |
. . . 4
⊢ ;;;4000
∈ ℂ |
155 | | eqid 2738 |
. . . . . 6
⊢ ;;;4000 =
;;;4000 |
156 | 5, 3, 143, 155 | decsuc 12397 |
. . . . 5
⊢ (;;;4000 +
1) = ;;;4001 |
157 | 1, 156 | eqtr4i 2769 |
. . . 4
⊢ 𝑁 = (;;;4000 + 1) |
158 | 154, 78, 157 | mvrraddi 11168 |
. . 3
⊢ (𝑁 − 1) = ;;;4000 |
159 | 152, 158 | eqtr4i 2769 |
. 2
⊢ (2
· ;;;2000)
= (𝑁 −
1) |
160 | 8, 9, 13, 14, 15, 15, 146, 159, 145 | mod2xi 16698 |
1
⊢
((2↑(𝑁 −
1)) mod 𝑁) = (1 mod 𝑁) |