Proof of Theorem 631prm
| Step | Hyp | Ref
| Expression |
| 1 | | 6nn0 12549 |
. . . 4
⊢ 6 ∈
ℕ0 |
| 2 | | 3nn0 12546 |
. . . 4
⊢ 3 ∈
ℕ0 |
| 3 | 1, 2 | deccl 12750 |
. . 3
⊢ ;63 ∈
ℕ0 |
| 4 | | 1nn 12278 |
. . 3
⊢ 1 ∈
ℕ |
| 5 | 3, 4 | decnncl 12755 |
. 2
⊢ ;;631 ∈ ℕ |
| 6 | | 8nn0 12551 |
. . 3
⊢ 8 ∈
ℕ0 |
| 7 | | 4nn0 12547 |
. . 3
⊢ 4 ∈
ℕ0 |
| 8 | | 1nn0 12544 |
. . 3
⊢ 1 ∈
ℕ0 |
| 9 | | 6lt8 12460 |
. . 3
⊢ 6 <
8 |
| 10 | | 3lt10 12872 |
. . 3
⊢ 3 <
;10 |
| 11 | | 1lt10 12874 |
. . 3
⊢ 1 <
;10 |
| 12 | 1, 6, 2, 7, 8, 8, 9, 10, 11 | 3decltc 12768 |
. 2
⊢ ;;631 < ;;841 |
| 13 | | 3nn 12346 |
. . . 4
⊢ 3 ∈
ℕ |
| 14 | 1, 13 | decnncl 12755 |
. . 3
⊢ ;63 ∈ ℕ |
| 15 | 14, 8, 8, 11 | declti 12773 |
. 2
⊢ 1 <
;;631 |
| 16 | | 0nn0 12543 |
. . 3
⊢ 0 ∈
ℕ0 |
| 17 | | 2cn 12342 |
. . . 4
⊢ 2 ∈
ℂ |
| 18 | 17 | mul02i 11451 |
. . 3
⊢ (0
· 2) = 0 |
| 19 | | 1e0p1 12777 |
. . 3
⊢ 1 = (0 +
1) |
| 20 | 3, 16, 18, 19 | dec2dvds 17102 |
. 2
⊢ ¬ 2
∥ ;;631 |
| 21 | | 2nn0 12545 |
. . . . 5
⊢ 2 ∈
ℕ0 |
| 22 | 21, 8 | deccl 12750 |
. . . 4
⊢ ;21 ∈
ℕ0 |
| 23 | 22, 16 | deccl 12750 |
. . 3
⊢ ;;210 ∈ ℕ0 |
| 24 | | eqid 2736 |
. . . 4
⊢ ;;210 = ;;210 |
| 25 | 8 | dec0h 12757 |
. . . 4
⊢ 1 = ;01 |
| 26 | | eqid 2736 |
. . . . 5
⊢ ;21 = ;21 |
| 27 | | 00id 11437 |
. . . . . 6
⊢ (0 + 0) =
0 |
| 28 | 16 | dec0h 12757 |
. . . . . 6
⊢ 0 = ;00 |
| 29 | 27, 28 | eqtri 2764 |
. . . . 5
⊢ (0 + 0) =
;00 |
| 30 | | 3t2e6 12433 |
. . . . . . 7
⊢ (3
· 2) = 6 |
| 31 | 30, 27 | oveq12i 7444 |
. . . . . 6
⊢ ((3
· 2) + (0 + 0)) = (6 + 0) |
| 32 | | 6cn 12358 |
. . . . . . 7
⊢ 6 ∈
ℂ |
| 33 | 32 | addridi 11449 |
. . . . . 6
⊢ (6 + 0) =
6 |
| 34 | 31, 33 | eqtri 2764 |
. . . . 5
⊢ ((3
· 2) + (0 + 0)) = 6 |
| 35 | | 3t1e3 12432 |
. . . . . . 7
⊢ (3
· 1) = 3 |
| 36 | 35 | oveq1i 7442 |
. . . . . 6
⊢ ((3
· 1) + 0) = (3 + 0) |
| 37 | | 3cn 12348 |
. . . . . . 7
⊢ 3 ∈
ℂ |
| 38 | 37 | addridi 11449 |
. . . . . 6
⊢ (3 + 0) =
3 |
| 39 | 2 | dec0h 12757 |
. . . . . 6
⊢ 3 = ;03 |
| 40 | 36, 38, 39 | 3eqtri 2768 |
. . . . 5
⊢ ((3
· 1) + 0) = ;03 |
| 41 | 21, 8, 16, 16, 26, 29, 2, 2, 16, 34, 40 | decma2c 12788 |
. . . 4
⊢ ((3
· ;21) + (0 + 0)) = ;63 |
| 42 | 37 | mul01i 11452 |
. . . . . 6
⊢ (3
· 0) = 0 |
| 43 | 42 | oveq1i 7442 |
. . . . 5
⊢ ((3
· 0) + 1) = (0 + 1) |
| 44 | | 0p1e1 12389 |
. . . . 5
⊢ (0 + 1) =
1 |
| 45 | 43, 44, 25 | 3eqtri 2768 |
. . . 4
⊢ ((3
· 0) + 1) = ;01 |
| 46 | 22, 16, 16, 8, 24, 25, 2, 8, 16, 41, 45 | decma2c 12788 |
. . 3
⊢ ((3
· ;;210) + 1) = ;;631 |
| 47 | | 1lt3 12440 |
. . 3
⊢ 1 <
3 |
| 48 | 13, 23, 4, 46, 47 | ndvdsi 16450 |
. 2
⊢ ¬ 3
∥ ;;631 |
| 49 | | 1lt5 12447 |
. . 3
⊢ 1 <
5 |
| 50 | 3, 4, 49 | dec5dvds 17103 |
. 2
⊢ ¬ 5
∥ ;;631 |
| 51 | | 7nn 12359 |
. . 3
⊢ 7 ∈
ℕ |
| 52 | | 9nn0 12552 |
. . . 4
⊢ 9 ∈
ℕ0 |
| 53 | 52, 16 | deccl 12750 |
. . 3
⊢ ;90 ∈
ℕ0 |
| 54 | | eqid 2736 |
. . . 4
⊢ ;90 = ;90 |
| 55 | | 7nn0 12550 |
. . . 4
⊢ 7 ∈
ℕ0 |
| 56 | 27 | oveq2i 7443 |
. . . . 5
⊢ ((7
· 9) + (0 + 0)) = ((7 · 9) + 0) |
| 57 | | 9cn 12367 |
. . . . . . 7
⊢ 9 ∈
ℂ |
| 58 | | 7cn 12361 |
. . . . . . 7
⊢ 7 ∈
ℂ |
| 59 | | 9t7e63 12862 |
. . . . . . 7
⊢ (9
· 7) = ;63 |
| 60 | 57, 58, 59 | mulcomli 11271 |
. . . . . 6
⊢ (7
· 9) = ;63 |
| 61 | 60 | oveq1i 7442 |
. . . . 5
⊢ ((7
· 9) + 0) = (;63 +
0) |
| 62 | 3 | nn0cni 12540 |
. . . . . 6
⊢ ;63 ∈ ℂ |
| 63 | 62 | addridi 11449 |
. . . . 5
⊢ (;63 + 0) = ;63 |
| 64 | 56, 61, 63 | 3eqtri 2768 |
. . . 4
⊢ ((7
· 9) + (0 + 0)) = ;63 |
| 65 | 58 | mul01i 11452 |
. . . . . 6
⊢ (7
· 0) = 0 |
| 66 | 65 | oveq1i 7442 |
. . . . 5
⊢ ((7
· 0) + 1) = (0 + 1) |
| 67 | 66, 44, 25 | 3eqtri 2768 |
. . . 4
⊢ ((7
· 0) + 1) = ;01 |
| 68 | 52, 16, 16, 8, 54, 25, 55, 8, 16, 64, 67 | decma2c 12788 |
. . 3
⊢ ((7
· ;90) + 1) = ;;631 |
| 69 | | 1lt7 12458 |
. . 3
⊢ 1 <
7 |
| 70 | 51, 53, 4, 68, 69 | ndvdsi 16450 |
. 2
⊢ ¬ 7
∥ ;;631 |
| 71 | 8, 4 | decnncl 12755 |
. . 3
⊢ ;11 ∈ ℕ |
| 72 | | 5nn0 12548 |
. . . 4
⊢ 5 ∈
ℕ0 |
| 73 | 72, 55 | deccl 12750 |
. . 3
⊢ ;57 ∈
ℕ0 |
| 74 | | 4nn 12350 |
. . 3
⊢ 4 ∈
ℕ |
| 75 | | eqid 2736 |
. . . 4
⊢ ;57 = ;57 |
| 76 | 7 | dec0h 12757 |
. . . 4
⊢ 4 = ;04 |
| 77 | 8, 8 | deccl 12750 |
. . . 4
⊢ ;11 ∈
ℕ0 |
| 78 | | eqid 2736 |
. . . . 5
⊢ ;11 = ;11 |
| 79 | | 8cn 12364 |
. . . . . . 7
⊢ 8 ∈
ℂ |
| 80 | 79 | addlidi 11450 |
. . . . . 6
⊢ (0 + 8) =
8 |
| 81 | 6 | dec0h 12757 |
. . . . . 6
⊢ 8 = ;08 |
| 82 | 80, 81 | eqtri 2764 |
. . . . 5
⊢ (0 + 8) =
;08 |
| 83 | | 5cn 12355 |
. . . . . . . 8
⊢ 5 ∈
ℂ |
| 84 | 83 | mullidi 11267 |
. . . . . . 7
⊢ (1
· 5) = 5 |
| 85 | 84, 44 | oveq12i 7444 |
. . . . . 6
⊢ ((1
· 5) + (0 + 1)) = (5 + 1) |
| 86 | | 5p1e6 12414 |
. . . . . 6
⊢ (5 + 1) =
6 |
| 87 | 85, 86 | eqtri 2764 |
. . . . 5
⊢ ((1
· 5) + (0 + 1)) = 6 |
| 88 | 84 | oveq1i 7442 |
. . . . . 6
⊢ ((1
· 5) + 8) = (5 + 8) |
| 89 | | 8p5e13 12818 |
. . . . . . 7
⊢ (8 + 5) =
;13 |
| 90 | 79, 83, 89 | addcomli 11454 |
. . . . . 6
⊢ (5 + 8) =
;13 |
| 91 | 88, 90 | eqtri 2764 |
. . . . 5
⊢ ((1
· 5) + 8) = ;13 |
| 92 | 8, 8, 16, 6, 78, 82, 72, 2, 8, 87, 91 | decmac 12787 |
. . . 4
⊢ ((;11 · 5) + (0 + 8)) = ;63 |
| 93 | 58 | mullidi 11267 |
. . . . . . 7
⊢ (1
· 7) = 7 |
| 94 | 93, 44 | oveq12i 7444 |
. . . . . 6
⊢ ((1
· 7) + (0 + 1)) = (7 + 1) |
| 95 | | 7p1e8 12416 |
. . . . . 6
⊢ (7 + 1) =
8 |
| 96 | 94, 95 | eqtri 2764 |
. . . . 5
⊢ ((1
· 7) + (0 + 1)) = 8 |
| 97 | 93 | oveq1i 7442 |
. . . . . 6
⊢ ((1
· 7) + 4) = (7 + 4) |
| 98 | | 7p4e11 12811 |
. . . . . 6
⊢ (7 + 4) =
;11 |
| 99 | 97, 98 | eqtri 2764 |
. . . . 5
⊢ ((1
· 7) + 4) = ;11 |
| 100 | 8, 8, 16, 7, 78, 76, 55, 8, 8, 96, 99 | decmac 12787 |
. . . 4
⊢ ((;11 · 7) + 4) = ;81 |
| 101 | 72, 55, 16, 7, 75, 76, 77, 8, 6, 92, 100 | decma2c 12788 |
. . 3
⊢ ((;11 · ;57) + 4) = ;;631 |
| 102 | | 4lt10 12871 |
. . . 4
⊢ 4 <
;10 |
| 103 | 4, 8, 7, 102 | declti 12773 |
. . 3
⊢ 4 <
;11 |
| 104 | 71, 73, 74, 101, 103 | ndvdsi 16450 |
. 2
⊢ ¬
;11 ∥ ;;631 |
| 105 | 8, 13 | decnncl 12755 |
. . 3
⊢ ;13 ∈ ℕ |
| 106 | 7, 6 | deccl 12750 |
. . 3
⊢ ;48 ∈
ℕ0 |
| 107 | | eqid 2736 |
. . . 4
⊢ ;48 = ;48 |
| 108 | 55 | dec0h 12757 |
. . . 4
⊢ 7 = ;07 |
| 109 | 8, 2 | deccl 12750 |
. . . 4
⊢ ;13 ∈
ℕ0 |
| 110 | | eqid 2736 |
. . . . 5
⊢ ;13 = ;13 |
| 111 | 77 | nn0cni 12540 |
. . . . . 6
⊢ ;11 ∈ ℂ |
| 112 | 111 | addlidi 11450 |
. . . . 5
⊢ (0 +
;11) = ;11 |
| 113 | | 4cn 12352 |
. . . . . . . 8
⊢ 4 ∈
ℂ |
| 114 | 113 | mullidi 11267 |
. . . . . . 7
⊢ (1
· 4) = 4 |
| 115 | | 1p1e2 12392 |
. . . . . . 7
⊢ (1 + 1) =
2 |
| 116 | 114, 115 | oveq12i 7444 |
. . . . . 6
⊢ ((1
· 4) + (1 + 1)) = (4 + 2) |
| 117 | | 4p2e6 12420 |
. . . . . 6
⊢ (4 + 2) =
6 |
| 118 | 116, 117 | eqtri 2764 |
. . . . 5
⊢ ((1
· 4) + (1 + 1)) = 6 |
| 119 | | 4t3e12 12833 |
. . . . . . 7
⊢ (4
· 3) = ;12 |
| 120 | 113, 37, 119 | mulcomli 11271 |
. . . . . 6
⊢ (3
· 4) = ;12 |
| 121 | | 2p1e3 12409 |
. . . . . 6
⊢ (2 + 1) =
3 |
| 122 | 8, 21, 8, 120, 121 | decaddi 12795 |
. . . . 5
⊢ ((3
· 4) + 1) = ;13 |
| 123 | 8, 2, 8, 8, 110, 112, 7, 2, 8, 118, 122 | decmac 12787 |
. . . 4
⊢ ((;13 · 4) + (0 + ;11)) = ;63 |
| 124 | 79 | mullidi 11267 |
. . . . . . 7
⊢ (1
· 8) = 8 |
| 125 | 37 | addlidi 11450 |
. . . . . . 7
⊢ (0 + 3) =
3 |
| 126 | 124, 125 | oveq12i 7444 |
. . . . . 6
⊢ ((1
· 8) + (0 + 3)) = (8 + 3) |
| 127 | | 8p3e11 12816 |
. . . . . 6
⊢ (8 + 3) =
;11 |
| 128 | 126, 127 | eqtri 2764 |
. . . . 5
⊢ ((1
· 8) + (0 + 3)) = ;11 |
| 129 | | 8t3e24 12851 |
. . . . . . 7
⊢ (8
· 3) = ;24 |
| 130 | 79, 37, 129 | mulcomli 11271 |
. . . . . 6
⊢ (3
· 8) = ;24 |
| 131 | 58, 113, 98 | addcomli 11454 |
. . . . . 6
⊢ (4 + 7) =
;11 |
| 132 | 21, 7, 55, 130, 121, 8, 131 | decaddci 12796 |
. . . . 5
⊢ ((3
· 8) + 7) = ;31 |
| 133 | 8, 2, 16, 55, 110, 108, 6, 8, 2, 128, 132 | decmac 12787 |
. . . 4
⊢ ((;13 · 8) + 7) = ;;111 |
| 134 | 7, 6, 16, 55, 107, 108, 109, 8, 77, 123, 133 | decma2c 12788 |
. . 3
⊢ ((;13 · ;48) + 7) = ;;631 |
| 135 | | 7lt10 12868 |
. . . 4
⊢ 7 <
;10 |
| 136 | 4, 2, 55, 135 | declti 12773 |
. . 3
⊢ 7 <
;13 |
| 137 | 105, 106,
51, 134, 136 | ndvdsi 16450 |
. 2
⊢ ¬
;13 ∥ ;;631 |
| 138 | 8, 51 | decnncl 12755 |
. . 3
⊢ ;17 ∈ ℕ |
| 139 | 2, 55 | deccl 12750 |
. . 3
⊢ ;37 ∈
ℕ0 |
| 140 | | 2nn 12340 |
. . 3
⊢ 2 ∈
ℕ |
| 141 | | eqid 2736 |
. . . 4
⊢ ;37 = ;37 |
| 142 | 21 | dec0h 12757 |
. . . 4
⊢ 2 = ;02 |
| 143 | 8, 55 | deccl 12750 |
. . . 4
⊢ ;17 ∈
ℕ0 |
| 144 | 8, 21 | deccl 12750 |
. . . 4
⊢ ;12 ∈
ℕ0 |
| 145 | | eqid 2736 |
. . . . 5
⊢ ;17 = ;17 |
| 146 | 144 | nn0cni 12540 |
. . . . . 6
⊢ ;12 ∈ ℂ |
| 147 | 146 | addlidi 11450 |
. . . . 5
⊢ (0 +
;12) = ;12 |
| 148 | 37 | mullidi 11267 |
. . . . . . 7
⊢ (1
· 3) = 3 |
| 149 | | 1p2e3 12410 |
. . . . . . 7
⊢ (1 + 2) =
3 |
| 150 | 148, 149 | oveq12i 7444 |
. . . . . 6
⊢ ((1
· 3) + (1 + 2)) = (3 + 3) |
| 151 | | 3p3e6 12419 |
. . . . . 6
⊢ (3 + 3) =
6 |
| 152 | 150, 151 | eqtri 2764 |
. . . . 5
⊢ ((1
· 3) + (1 + 2)) = 6 |
| 153 | | 7t3e21 12845 |
. . . . . 6
⊢ (7
· 3) = ;21 |
| 154 | 21, 8, 21, 153, 149 | decaddi 12795 |
. . . . 5
⊢ ((7
· 3) + 2) = ;23 |
| 155 | 8, 55, 8, 21, 145, 147, 2, 2, 21, 152, 154 | decmac 12787 |
. . . 4
⊢ ((;17 · 3) + (0 + ;12)) = ;63 |
| 156 | 83 | addlidi 11450 |
. . . . . . 7
⊢ (0 + 5) =
5 |
| 157 | 93, 156 | oveq12i 7444 |
. . . . . 6
⊢ ((1
· 7) + (0 + 5)) = (7 + 5) |
| 158 | | 7p5e12 12812 |
. . . . . 6
⊢ (7 + 5) =
;12 |
| 159 | 157, 158 | eqtri 2764 |
. . . . 5
⊢ ((1
· 7) + (0 + 5)) = ;12 |
| 160 | | 7t7e49 12849 |
. . . . . 6
⊢ (7
· 7) = ;49 |
| 161 | | 4p1e5 12413 |
. . . . . 6
⊢ (4 + 1) =
5 |
| 162 | | 9p2e11 12822 |
. . . . . 6
⊢ (9 + 2) =
;11 |
| 163 | 7, 52, 21, 160, 161, 8, 162 | decaddci 12796 |
. . . . 5
⊢ ((7
· 7) + 2) = ;51 |
| 164 | 8, 55, 16, 21, 145, 142, 55, 8, 72, 159, 163 | decmac 12787 |
. . . 4
⊢ ((;17 · 7) + 2) = ;;121 |
| 165 | 2, 55, 16, 21, 141, 142, 143, 8, 144, 155, 164 | decma2c 12788 |
. . 3
⊢ ((;17 · ;37) + 2) = ;;631 |
| 166 | | 2lt10 12873 |
. . . 4
⊢ 2 <
;10 |
| 167 | 4, 55, 21, 166 | declti 12773 |
. . 3
⊢ 2 <
;17 |
| 168 | 138, 139,
140, 165, 167 | ndvdsi 16450 |
. 2
⊢ ¬
;17 ∥ ;;631 |
| 169 | | 9nn 12365 |
. . . 4
⊢ 9 ∈
ℕ |
| 170 | 8, 169 | decnncl 12755 |
. . 3
⊢ ;19 ∈ ℕ |
| 171 | 2, 2 | deccl 12750 |
. . 3
⊢ ;33 ∈
ℕ0 |
| 172 | | eqid 2736 |
. . . 4
⊢ ;33 = ;33 |
| 173 | 8, 52 | deccl 12750 |
. . . 4
⊢ ;19 ∈
ℕ0 |
| 174 | | eqid 2736 |
. . . . 5
⊢ ;19 = ;19 |
| 175 | 32 | addlidi 11450 |
. . . . . 6
⊢ (0 + 6) =
6 |
| 176 | 1 | dec0h 12757 |
. . . . . 6
⊢ 6 = ;06 |
| 177 | 175, 176 | eqtri 2764 |
. . . . 5
⊢ (0 + 6) =
;06 |
| 178 | 148, 125 | oveq12i 7444 |
. . . . . 6
⊢ ((1
· 3) + (0 + 3)) = (3 + 3) |
| 179 | 178, 151 | eqtri 2764 |
. . . . 5
⊢ ((1
· 3) + (0 + 3)) = 6 |
| 180 | | 9t3e27 12858 |
. . . . . 6
⊢ (9
· 3) = ;27 |
| 181 | | 7p6e13 12813 |
. . . . . 6
⊢ (7 + 6) =
;13 |
| 182 | 21, 55, 1, 180, 121, 2, 181 | decaddci 12796 |
. . . . 5
⊢ ((9
· 3) + 6) = ;33 |
| 183 | 8, 52, 16, 1, 174, 177, 2, 2, 2, 179, 182 | decmac 12787 |
. . . 4
⊢ ((;19 · 3) + (0 + 6)) = ;63 |
| 184 | 21, 55, 7, 180, 121, 8, 98 | decaddci 12796 |
. . . . 5
⊢ ((9
· 3) + 4) = ;31 |
| 185 | 8, 52, 16, 7, 174, 76, 2, 8, 2,
179, 184 | decmac 12787 |
. . . 4
⊢ ((;19 · 3) + 4) = ;61 |
| 186 | 2, 2, 16, 7, 172, 76, 173, 8, 1, 183, 185 | decma2c 12788 |
. . 3
⊢ ((;19 · ;33) + 4) = ;;631 |
| 187 | 4, 52, 7, 102 | declti 12773 |
. . 3
⊢ 4 <
;19 |
| 188 | 170, 171,
74, 186, 187 | ndvdsi 16450 |
. 2
⊢ ¬
;19 ∥ ;;631 |
| 189 | 21, 13 | decnncl 12755 |
. . 3
⊢ ;23 ∈ ℕ |
| 190 | 21, 55 | deccl 12750 |
. . 3
⊢ ;27 ∈
ℕ0 |
| 191 | | 10nn 12751 |
. . 3
⊢ ;10 ∈ ℕ |
| 192 | | eqid 2736 |
. . . 4
⊢ ;27 = ;27 |
| 193 | | eqid 2736 |
. . . 4
⊢ ;10 = ;10 |
| 194 | 21, 2 | deccl 12750 |
. . . 4
⊢ ;23 ∈
ℕ0 |
| 195 | 8, 1 | deccl 12750 |
. . . 4
⊢ ;16 ∈
ℕ0 |
| 196 | | eqid 2736 |
. . . . 5
⊢ ;23 = ;23 |
| 197 | | eqid 2736 |
. . . . . 6
⊢ ;16 = ;16 |
| 198 | | ax-1cn 11214 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 199 | | 6p1e7 12415 |
. . . . . . 7
⊢ (6 + 1) =
7 |
| 200 | 32, 198, 199 | addcomli 11454 |
. . . . . 6
⊢ (1 + 6) =
7 |
| 201 | 16, 8, 8, 1, 25, 197, 44, 200 | decadd 12789 |
. . . . 5
⊢ (1 +
;16) = ;17 |
| 202 | | 2t2e4 12431 |
. . . . . . 7
⊢ (2
· 2) = 4 |
| 203 | 202, 115 | oveq12i 7444 |
. . . . . 6
⊢ ((2
· 2) + (1 + 1)) = (4 + 2) |
| 204 | 203, 117 | eqtri 2764 |
. . . . 5
⊢ ((2
· 2) + (1 + 1)) = 6 |
| 205 | 30 | oveq1i 7442 |
. . . . . 6
⊢ ((3
· 2) + 7) = (6 + 7) |
| 206 | 58, 32, 181 | addcomli 11454 |
. . . . . 6
⊢ (6 + 7) =
;13 |
| 207 | 205, 206 | eqtri 2764 |
. . . . 5
⊢ ((3
· 2) + 7) = ;13 |
| 208 | 21, 2, 8, 55, 196, 201, 21, 2, 8, 204, 207 | decmac 12787 |
. . . 4
⊢ ((;23 · 2) + (1 + ;16)) = ;63 |
| 209 | | 7t2e14 12844 |
. . . . . . . . 9
⊢ (7
· 2) = ;14 |
| 210 | 58, 17, 209 | mulcomli 11271 |
. . . . . . . 8
⊢ (2
· 7) = ;14 |
| 211 | 8, 7, 21, 210, 117 | decaddi 12795 |
. . . . . . 7
⊢ ((2
· 7) + 2) = ;16 |
| 212 | 58, 37, 153 | mulcomli 11271 |
. . . . . . 7
⊢ (3
· 7) = ;21 |
| 213 | 55, 21, 2, 196, 8, 21, 211, 212 | decmul1c 12800 |
. . . . . 6
⊢ (;23 · 7) = ;;161 |
| 214 | 213 | oveq1i 7442 |
. . . . 5
⊢ ((;23 · 7) + 0) = (;;161 + 0) |
| 215 | 195, 8 | deccl 12750 |
. . . . . . 7
⊢ ;;161 ∈ ℕ0 |
| 216 | 215 | nn0cni 12540 |
. . . . . 6
⊢ ;;161 ∈ ℂ |
| 217 | 216 | addridi 11449 |
. . . . 5
⊢ (;;161 + 0) = ;;161 |
| 218 | 214, 217 | eqtri 2764 |
. . . 4
⊢ ((;23 · 7) + 0) = ;;161 |
| 219 | 21, 55, 8, 16, 192, 193, 194, 8, 195, 208, 218 | decma2c 12788 |
. . 3
⊢ ((;23 · ;27) + ;10) = ;;631 |
| 220 | | 10pos 12752 |
. . . 4
⊢ 0 <
;10 |
| 221 | | 1lt2 12438 |
. . . 4
⊢ 1 <
2 |
| 222 | 8, 21, 16, 2, 220, 221 | decltc 12764 |
. . 3
⊢ ;10 < ;23 |
| 223 | 189, 190,
191, 219, 222 | ndvdsi 16450 |
. 2
⊢ ¬
;23 ∥ ;;631 |
| 224 | 5, 12, 15, 20, 48, 50, 70, 104, 137, 168, 188, 223 | prmlem2 17158 |
1
⊢ ;;631 ∈ ℙ |