Proof of Theorem 631prm
Step | Hyp | Ref
| Expression |
1 | | 6nn0 12237 |
. . . 4
⊢ 6 ∈
ℕ0 |
2 | | 3nn0 12234 |
. . . 4
⊢ 3 ∈
ℕ0 |
3 | 1, 2 | deccl 12434 |
. . 3
⊢ ;63 ∈
ℕ0 |
4 | | 1nn 11967 |
. . 3
⊢ 1 ∈
ℕ |
5 | 3, 4 | decnncl 12439 |
. 2
⊢ ;;631 ∈ ℕ |
6 | | 8nn0 12239 |
. . 3
⊢ 8 ∈
ℕ0 |
7 | | 4nn0 12235 |
. . 3
⊢ 4 ∈
ℕ0 |
8 | | 1nn0 12232 |
. . 3
⊢ 1 ∈
ℕ0 |
9 | | 6lt8 12149 |
. . 3
⊢ 6 <
8 |
10 | | 3lt10 12556 |
. . 3
⊢ 3 <
;10 |
11 | | 1lt10 12558 |
. . 3
⊢ 1 <
;10 |
12 | 1, 6, 2, 7, 8, 8, 9, 10, 11 | 3decltc 12452 |
. 2
⊢ ;;631 < ;;841 |
13 | | 3nn 12035 |
. . . 4
⊢ 3 ∈
ℕ |
14 | 1, 13 | decnncl 12439 |
. . 3
⊢ ;63 ∈ ℕ |
15 | 14, 8, 8, 11 | declti 12457 |
. 2
⊢ 1 <
;;631 |
16 | | 0nn0 12231 |
. . 3
⊢ 0 ∈
ℕ0 |
17 | | 2cn 12031 |
. . . 4
⊢ 2 ∈
ℂ |
18 | 17 | mul02i 11147 |
. . 3
⊢ (0
· 2) = 0 |
19 | | 1e0p1 12461 |
. . 3
⊢ 1 = (0 +
1) |
20 | 3, 16, 18, 19 | dec2dvds 16745 |
. 2
⊢ ¬ 2
∥ ;;631 |
21 | | 2nn0 12233 |
. . . . 5
⊢ 2 ∈
ℕ0 |
22 | 21, 8 | deccl 12434 |
. . . 4
⊢ ;21 ∈
ℕ0 |
23 | 22, 16 | deccl 12434 |
. . 3
⊢ ;;210 ∈ ℕ0 |
24 | | eqid 2739 |
. . . 4
⊢ ;;210 = ;;210 |
25 | 8 | dec0h 12441 |
. . . 4
⊢ 1 = ;01 |
26 | | eqid 2739 |
. . . . 5
⊢ ;21 = ;21 |
27 | | 00id 11133 |
. . . . . 6
⊢ (0 + 0) =
0 |
28 | 16 | dec0h 12441 |
. . . . . 6
⊢ 0 = ;00 |
29 | 27, 28 | eqtri 2767 |
. . . . 5
⊢ (0 + 0) =
;00 |
30 | | 3t2e6 12122 |
. . . . . . 7
⊢ (3
· 2) = 6 |
31 | 30, 27 | oveq12i 7280 |
. . . . . 6
⊢ ((3
· 2) + (0 + 0)) = (6 + 0) |
32 | | 6cn 12047 |
. . . . . . 7
⊢ 6 ∈
ℂ |
33 | 32 | addid1i 11145 |
. . . . . 6
⊢ (6 + 0) =
6 |
34 | 31, 33 | eqtri 2767 |
. . . . 5
⊢ ((3
· 2) + (0 + 0)) = 6 |
35 | | 3t1e3 12121 |
. . . . . . 7
⊢ (3
· 1) = 3 |
36 | 35 | oveq1i 7278 |
. . . . . 6
⊢ ((3
· 1) + 0) = (3 + 0) |
37 | | 3cn 12037 |
. . . . . . 7
⊢ 3 ∈
ℂ |
38 | 37 | addid1i 11145 |
. . . . . 6
⊢ (3 + 0) =
3 |
39 | 2 | dec0h 12441 |
. . . . . 6
⊢ 3 = ;03 |
40 | 36, 38, 39 | 3eqtri 2771 |
. . . . 5
⊢ ((3
· 1) + 0) = ;03 |
41 | 21, 8, 16, 16, 26, 29, 2, 2, 16, 34, 40 | decma2c 12472 |
. . . 4
⊢ ((3
· ;21) + (0 + 0)) = ;63 |
42 | 37 | mul01i 11148 |
. . . . . 6
⊢ (3
· 0) = 0 |
43 | 42 | oveq1i 7278 |
. . . . 5
⊢ ((3
· 0) + 1) = (0 + 1) |
44 | | 0p1e1 12078 |
. . . . 5
⊢ (0 + 1) =
1 |
45 | 43, 44, 25 | 3eqtri 2771 |
. . . 4
⊢ ((3
· 0) + 1) = ;01 |
46 | 22, 16, 16, 8, 24, 25, 2, 8, 16, 41, 45 | decma2c 12472 |
. . 3
⊢ ((3
· ;;210) + 1) = ;;631 |
47 | | 1lt3 12129 |
. . 3
⊢ 1 <
3 |
48 | 13, 23, 4, 46, 47 | ndvdsi 16102 |
. 2
⊢ ¬ 3
∥ ;;631 |
49 | | 1lt5 12136 |
. . 3
⊢ 1 <
5 |
50 | 3, 4, 49 | dec5dvds 16746 |
. 2
⊢ ¬ 5
∥ ;;631 |
51 | | 7nn 12048 |
. . 3
⊢ 7 ∈
ℕ |
52 | | 9nn0 12240 |
. . . 4
⊢ 9 ∈
ℕ0 |
53 | 52, 16 | deccl 12434 |
. . 3
⊢ ;90 ∈
ℕ0 |
54 | | eqid 2739 |
. . . 4
⊢ ;90 = ;90 |
55 | | 7nn0 12238 |
. . . 4
⊢ 7 ∈
ℕ0 |
56 | 27 | oveq2i 7279 |
. . . . 5
⊢ ((7
· 9) + (0 + 0)) = ((7 · 9) + 0) |
57 | | 9cn 12056 |
. . . . . . 7
⊢ 9 ∈
ℂ |
58 | | 7cn 12050 |
. . . . . . 7
⊢ 7 ∈
ℂ |
59 | | 9t7e63 12546 |
. . . . . . 7
⊢ (9
· 7) = ;63 |
60 | 57, 58, 59 | mulcomli 10968 |
. . . . . 6
⊢ (7
· 9) = ;63 |
61 | 60 | oveq1i 7278 |
. . . . 5
⊢ ((7
· 9) + 0) = (;63 +
0) |
62 | 3 | nn0cni 12228 |
. . . . . 6
⊢ ;63 ∈ ℂ |
63 | 62 | addid1i 11145 |
. . . . 5
⊢ (;63 + 0) = ;63 |
64 | 56, 61, 63 | 3eqtri 2771 |
. . . 4
⊢ ((7
· 9) + (0 + 0)) = ;63 |
65 | 58 | mul01i 11148 |
. . . . . 6
⊢ (7
· 0) = 0 |
66 | 65 | oveq1i 7278 |
. . . . 5
⊢ ((7
· 0) + 1) = (0 + 1) |
67 | 66, 44, 25 | 3eqtri 2771 |
. . . 4
⊢ ((7
· 0) + 1) = ;01 |
68 | 52, 16, 16, 8, 54, 25, 55, 8, 16, 64, 67 | decma2c 12472 |
. . 3
⊢ ((7
· ;90) + 1) = ;;631 |
69 | | 1lt7 12147 |
. . 3
⊢ 1 <
7 |
70 | 51, 53, 4, 68, 69 | ndvdsi 16102 |
. 2
⊢ ¬ 7
∥ ;;631 |
71 | 8, 4 | decnncl 12439 |
. . 3
⊢ ;11 ∈ ℕ |
72 | | 5nn0 12236 |
. . . 4
⊢ 5 ∈
ℕ0 |
73 | 72, 55 | deccl 12434 |
. . 3
⊢ ;57 ∈
ℕ0 |
74 | | 4nn 12039 |
. . 3
⊢ 4 ∈
ℕ |
75 | | eqid 2739 |
. . . 4
⊢ ;57 = ;57 |
76 | 7 | dec0h 12441 |
. . . 4
⊢ 4 = ;04 |
77 | 8, 8 | deccl 12434 |
. . . 4
⊢ ;11 ∈
ℕ0 |
78 | | eqid 2739 |
. . . . 5
⊢ ;11 = ;11 |
79 | | 8cn 12053 |
. . . . . . 7
⊢ 8 ∈
ℂ |
80 | 79 | addid2i 11146 |
. . . . . 6
⊢ (0 + 8) =
8 |
81 | 6 | dec0h 12441 |
. . . . . 6
⊢ 8 = ;08 |
82 | 80, 81 | eqtri 2767 |
. . . . 5
⊢ (0 + 8) =
;08 |
83 | | 5cn 12044 |
. . . . . . . 8
⊢ 5 ∈
ℂ |
84 | 83 | mulid2i 10964 |
. . . . . . 7
⊢ (1
· 5) = 5 |
85 | 84, 44 | oveq12i 7280 |
. . . . . 6
⊢ ((1
· 5) + (0 + 1)) = (5 + 1) |
86 | | 5p1e6 12103 |
. . . . . 6
⊢ (5 + 1) =
6 |
87 | 85, 86 | eqtri 2767 |
. . . . 5
⊢ ((1
· 5) + (0 + 1)) = 6 |
88 | 84 | oveq1i 7278 |
. . . . . 6
⊢ ((1
· 5) + 8) = (5 + 8) |
89 | | 8p5e13 12502 |
. . . . . . 7
⊢ (8 + 5) =
;13 |
90 | 79, 83, 89 | addcomli 11150 |
. . . . . 6
⊢ (5 + 8) =
;13 |
91 | 88, 90 | eqtri 2767 |
. . . . 5
⊢ ((1
· 5) + 8) = ;13 |
92 | 8, 8, 16, 6, 78, 82, 72, 2, 8, 87, 91 | decmac 12471 |
. . . 4
⊢ ((;11 · 5) + (0 + 8)) = ;63 |
93 | 58 | mulid2i 10964 |
. . . . . . 7
⊢ (1
· 7) = 7 |
94 | 93, 44 | oveq12i 7280 |
. . . . . 6
⊢ ((1
· 7) + (0 + 1)) = (7 + 1) |
95 | | 7p1e8 12105 |
. . . . . 6
⊢ (7 + 1) =
8 |
96 | 94, 95 | eqtri 2767 |
. . . . 5
⊢ ((1
· 7) + (0 + 1)) = 8 |
97 | 93 | oveq1i 7278 |
. . . . . 6
⊢ ((1
· 7) + 4) = (7 + 4) |
98 | | 7p4e11 12495 |
. . . . . 6
⊢ (7 + 4) =
;11 |
99 | 97, 98 | eqtri 2767 |
. . . . 5
⊢ ((1
· 7) + 4) = ;11 |
100 | 8, 8, 16, 7, 78, 76, 55, 8, 8, 96, 99 | decmac 12471 |
. . . 4
⊢ ((;11 · 7) + 4) = ;81 |
101 | 72, 55, 16, 7, 75, 76, 77, 8, 6, 92, 100 | decma2c 12472 |
. . 3
⊢ ((;11 · ;57) + 4) = ;;631 |
102 | | 4lt10 12555 |
. . . 4
⊢ 4 <
;10 |
103 | 4, 8, 7, 102 | declti 12457 |
. . 3
⊢ 4 <
;11 |
104 | 71, 73, 74, 101, 103 | ndvdsi 16102 |
. 2
⊢ ¬
;11 ∥ ;;631 |
105 | 8, 13 | decnncl 12439 |
. . 3
⊢ ;13 ∈ ℕ |
106 | 7, 6 | deccl 12434 |
. . 3
⊢ ;48 ∈
ℕ0 |
107 | | eqid 2739 |
. . . 4
⊢ ;48 = ;48 |
108 | 55 | dec0h 12441 |
. . . 4
⊢ 7 = ;07 |
109 | 8, 2 | deccl 12434 |
. . . 4
⊢ ;13 ∈
ℕ0 |
110 | | eqid 2739 |
. . . . 5
⊢ ;13 = ;13 |
111 | 77 | nn0cni 12228 |
. . . . . 6
⊢ ;11 ∈ ℂ |
112 | 111 | addid2i 11146 |
. . . . 5
⊢ (0 +
;11) = ;11 |
113 | | 4cn 12041 |
. . . . . . . 8
⊢ 4 ∈
ℂ |
114 | 113 | mulid2i 10964 |
. . . . . . 7
⊢ (1
· 4) = 4 |
115 | | 1p1e2 12081 |
. . . . . . 7
⊢ (1 + 1) =
2 |
116 | 114, 115 | oveq12i 7280 |
. . . . . 6
⊢ ((1
· 4) + (1 + 1)) = (4 + 2) |
117 | | 4p2e6 12109 |
. . . . . 6
⊢ (4 + 2) =
6 |
118 | 116, 117 | eqtri 2767 |
. . . . 5
⊢ ((1
· 4) + (1 + 1)) = 6 |
119 | | 4t3e12 12517 |
. . . . . . 7
⊢ (4
· 3) = ;12 |
120 | 113, 37, 119 | mulcomli 10968 |
. . . . . 6
⊢ (3
· 4) = ;12 |
121 | | 2p1e3 12098 |
. . . . . 6
⊢ (2 + 1) =
3 |
122 | 8, 21, 8, 120, 121 | decaddi 12479 |
. . . . 5
⊢ ((3
· 4) + 1) = ;13 |
123 | 8, 2, 8, 8, 110, 112, 7, 2, 8, 118, 122 | decmac 12471 |
. . . 4
⊢ ((;13 · 4) + (0 + ;11)) = ;63 |
124 | 79 | mulid2i 10964 |
. . . . . . 7
⊢ (1
· 8) = 8 |
125 | 37 | addid2i 11146 |
. . . . . . 7
⊢ (0 + 3) =
3 |
126 | 124, 125 | oveq12i 7280 |
. . . . . 6
⊢ ((1
· 8) + (0 + 3)) = (8 + 3) |
127 | | 8p3e11 12500 |
. . . . . 6
⊢ (8 + 3) =
;11 |
128 | 126, 127 | eqtri 2767 |
. . . . 5
⊢ ((1
· 8) + (0 + 3)) = ;11 |
129 | | 8t3e24 12535 |
. . . . . . 7
⊢ (8
· 3) = ;24 |
130 | 79, 37, 129 | mulcomli 10968 |
. . . . . 6
⊢ (3
· 8) = ;24 |
131 | 58, 113, 98 | addcomli 11150 |
. . . . . 6
⊢ (4 + 7) =
;11 |
132 | 21, 7, 55, 130, 121, 8, 131 | decaddci 12480 |
. . . . 5
⊢ ((3
· 8) + 7) = ;31 |
133 | 8, 2, 16, 55, 110, 108, 6, 8, 2, 128, 132 | decmac 12471 |
. . . 4
⊢ ((;13 · 8) + 7) = ;;111 |
134 | 7, 6, 16, 55, 107, 108, 109, 8, 77, 123, 133 | decma2c 12472 |
. . 3
⊢ ((;13 · ;48) + 7) = ;;631 |
135 | | 7lt10 12552 |
. . . 4
⊢ 7 <
;10 |
136 | 4, 2, 55, 135 | declti 12457 |
. . 3
⊢ 7 <
;13 |
137 | 105, 106,
51, 134, 136 | ndvdsi 16102 |
. 2
⊢ ¬
;13 ∥ ;;631 |
138 | 8, 51 | decnncl 12439 |
. . 3
⊢ ;17 ∈ ℕ |
139 | 2, 55 | deccl 12434 |
. . 3
⊢ ;37 ∈
ℕ0 |
140 | | 2nn 12029 |
. . 3
⊢ 2 ∈
ℕ |
141 | | eqid 2739 |
. . . 4
⊢ ;37 = ;37 |
142 | 21 | dec0h 12441 |
. . . 4
⊢ 2 = ;02 |
143 | 8, 55 | deccl 12434 |
. . . 4
⊢ ;17 ∈
ℕ0 |
144 | 8, 21 | deccl 12434 |
. . . 4
⊢ ;12 ∈
ℕ0 |
145 | | eqid 2739 |
. . . . 5
⊢ ;17 = ;17 |
146 | 144 | nn0cni 12228 |
. . . . . 6
⊢ ;12 ∈ ℂ |
147 | 146 | addid2i 11146 |
. . . . 5
⊢ (0 +
;12) = ;12 |
148 | 37 | mulid2i 10964 |
. . . . . . 7
⊢ (1
· 3) = 3 |
149 | | 1p2e3 12099 |
. . . . . . 7
⊢ (1 + 2) =
3 |
150 | 148, 149 | oveq12i 7280 |
. . . . . 6
⊢ ((1
· 3) + (1 + 2)) = (3 + 3) |
151 | | 3p3e6 12108 |
. . . . . 6
⊢ (3 + 3) =
6 |
152 | 150, 151 | eqtri 2767 |
. . . . 5
⊢ ((1
· 3) + (1 + 2)) = 6 |
153 | | 7t3e21 12529 |
. . . . . 6
⊢ (7
· 3) = ;21 |
154 | 21, 8, 21, 153, 149 | decaddi 12479 |
. . . . 5
⊢ ((7
· 3) + 2) = ;23 |
155 | 8, 55, 8, 21, 145, 147, 2, 2, 21, 152, 154 | decmac 12471 |
. . . 4
⊢ ((;17 · 3) + (0 + ;12)) = ;63 |
156 | 83 | addid2i 11146 |
. . . . . . 7
⊢ (0 + 5) =
5 |
157 | 93, 156 | oveq12i 7280 |
. . . . . 6
⊢ ((1
· 7) + (0 + 5)) = (7 + 5) |
158 | | 7p5e12 12496 |
. . . . . 6
⊢ (7 + 5) =
;12 |
159 | 157, 158 | eqtri 2767 |
. . . . 5
⊢ ((1
· 7) + (0 + 5)) = ;12 |
160 | | 7t7e49 12533 |
. . . . . 6
⊢ (7
· 7) = ;49 |
161 | | 4p1e5 12102 |
. . . . . 6
⊢ (4 + 1) =
5 |
162 | | 9p2e11 12506 |
. . . . . 6
⊢ (9 + 2) =
;11 |
163 | 7, 52, 21, 160, 161, 8, 162 | decaddci 12480 |
. . . . 5
⊢ ((7
· 7) + 2) = ;51 |
164 | 8, 55, 16, 21, 145, 142, 55, 8, 72, 159, 163 | decmac 12471 |
. . . 4
⊢ ((;17 · 7) + 2) = ;;121 |
165 | 2, 55, 16, 21, 141, 142, 143, 8, 144, 155, 164 | decma2c 12472 |
. . 3
⊢ ((;17 · ;37) + 2) = ;;631 |
166 | | 2lt10 12557 |
. . . 4
⊢ 2 <
;10 |
167 | 4, 55, 21, 166 | declti 12457 |
. . 3
⊢ 2 <
;17 |
168 | 138, 139,
140, 165, 167 | ndvdsi 16102 |
. 2
⊢ ¬
;17 ∥ ;;631 |
169 | | 9nn 12054 |
. . . 4
⊢ 9 ∈
ℕ |
170 | 8, 169 | decnncl 12439 |
. . 3
⊢ ;19 ∈ ℕ |
171 | 2, 2 | deccl 12434 |
. . 3
⊢ ;33 ∈
ℕ0 |
172 | | eqid 2739 |
. . . 4
⊢ ;33 = ;33 |
173 | 8, 52 | deccl 12434 |
. . . 4
⊢ ;19 ∈
ℕ0 |
174 | | eqid 2739 |
. . . . 5
⊢ ;19 = ;19 |
175 | 32 | addid2i 11146 |
. . . . . 6
⊢ (0 + 6) =
6 |
176 | 1 | dec0h 12441 |
. . . . . 6
⊢ 6 = ;06 |
177 | 175, 176 | eqtri 2767 |
. . . . 5
⊢ (0 + 6) =
;06 |
178 | 148, 125 | oveq12i 7280 |
. . . . . 6
⊢ ((1
· 3) + (0 + 3)) = (3 + 3) |
179 | 178, 151 | eqtri 2767 |
. . . . 5
⊢ ((1
· 3) + (0 + 3)) = 6 |
180 | | 9t3e27 12542 |
. . . . . 6
⊢ (9
· 3) = ;27 |
181 | | 7p6e13 12497 |
. . . . . 6
⊢ (7 + 6) =
;13 |
182 | 21, 55, 1, 180, 121, 2, 181 | decaddci 12480 |
. . . . 5
⊢ ((9
· 3) + 6) = ;33 |
183 | 8, 52, 16, 1, 174, 177, 2, 2, 2, 179, 182 | decmac 12471 |
. . . 4
⊢ ((;19 · 3) + (0 + 6)) = ;63 |
184 | 21, 55, 7, 180, 121, 8, 98 | decaddci 12480 |
. . . . 5
⊢ ((9
· 3) + 4) = ;31 |
185 | 8, 52, 16, 7, 174, 76, 2, 8, 2,
179, 184 | decmac 12471 |
. . . 4
⊢ ((;19 · 3) + 4) = ;61 |
186 | 2, 2, 16, 7, 172, 76, 173, 8, 1, 183, 185 | decma2c 12472 |
. . 3
⊢ ((;19 · ;33) + 4) = ;;631 |
187 | 4, 52, 7, 102 | declti 12457 |
. . 3
⊢ 4 <
;19 |
188 | 170, 171,
74, 186, 187 | ndvdsi 16102 |
. 2
⊢ ¬
;19 ∥ ;;631 |
189 | 21, 13 | decnncl 12439 |
. . 3
⊢ ;23 ∈ ℕ |
190 | 21, 55 | deccl 12434 |
. . 3
⊢ ;27 ∈
ℕ0 |
191 | | 10nn 12435 |
. . 3
⊢ ;10 ∈ ℕ |
192 | | eqid 2739 |
. . . 4
⊢ ;27 = ;27 |
193 | | eqid 2739 |
. . . 4
⊢ ;10 = ;10 |
194 | 21, 2 | deccl 12434 |
. . . 4
⊢ ;23 ∈
ℕ0 |
195 | 8, 1 | deccl 12434 |
. . . 4
⊢ ;16 ∈
ℕ0 |
196 | | eqid 2739 |
. . . . 5
⊢ ;23 = ;23 |
197 | | eqid 2739 |
. . . . . 6
⊢ ;16 = ;16 |
198 | | ax-1cn 10913 |
. . . . . . 7
⊢ 1 ∈
ℂ |
199 | | 6p1e7 12104 |
. . . . . . 7
⊢ (6 + 1) =
7 |
200 | 32, 198, 199 | addcomli 11150 |
. . . . . 6
⊢ (1 + 6) =
7 |
201 | 16, 8, 8, 1, 25, 197, 44, 200 | decadd 12473 |
. . . . 5
⊢ (1 +
;16) = ;17 |
202 | | 2t2e4 12120 |
. . . . . . 7
⊢ (2
· 2) = 4 |
203 | 202, 115 | oveq12i 7280 |
. . . . . 6
⊢ ((2
· 2) + (1 + 1)) = (4 + 2) |
204 | 203, 117 | eqtri 2767 |
. . . . 5
⊢ ((2
· 2) + (1 + 1)) = 6 |
205 | 30 | oveq1i 7278 |
. . . . . 6
⊢ ((3
· 2) + 7) = (6 + 7) |
206 | 58, 32, 181 | addcomli 11150 |
. . . . . 6
⊢ (6 + 7) =
;13 |
207 | 205, 206 | eqtri 2767 |
. . . . 5
⊢ ((3
· 2) + 7) = ;13 |
208 | 21, 2, 8, 55, 196, 201, 21, 2, 8, 204, 207 | decmac 12471 |
. . . 4
⊢ ((;23 · 2) + (1 + ;16)) = ;63 |
209 | | 7t2e14 12528 |
. . . . . . . . 9
⊢ (7
· 2) = ;14 |
210 | 58, 17, 209 | mulcomli 10968 |
. . . . . . . 8
⊢ (2
· 7) = ;14 |
211 | 8, 7, 21, 210, 117 | decaddi 12479 |
. . . . . . 7
⊢ ((2
· 7) + 2) = ;16 |
212 | 58, 37, 153 | mulcomli 10968 |
. . . . . . 7
⊢ (3
· 7) = ;21 |
213 | 55, 21, 2, 196, 8, 21, 211, 212 | decmul1c 12484 |
. . . . . 6
⊢ (;23 · 7) = ;;161 |
214 | 213 | oveq1i 7278 |
. . . . 5
⊢ ((;23 · 7) + 0) = (;;161 + 0) |
215 | 195, 8 | deccl 12434 |
. . . . . . 7
⊢ ;;161 ∈ ℕ0 |
216 | 215 | nn0cni 12228 |
. . . . . 6
⊢ ;;161 ∈ ℂ |
217 | 216 | addid1i 11145 |
. . . . 5
⊢ (;;161 + 0) = ;;161 |
218 | 214, 217 | eqtri 2767 |
. . . 4
⊢ ((;23 · 7) + 0) = ;;161 |
219 | 21, 55, 8, 16, 192, 193, 194, 8, 195, 208, 218 | decma2c 12472 |
. . 3
⊢ ((;23 · ;27) + ;10) = ;;631 |
220 | | 10pos 12436 |
. . . 4
⊢ 0 <
;10 |
221 | | 1lt2 12127 |
. . . 4
⊢ 1 <
2 |
222 | 8, 21, 16, 2, 220, 221 | decltc 12448 |
. . 3
⊢ ;10 < ;23 |
223 | 189, 190,
191, 219, 222 | ndvdsi 16102 |
. 2
⊢ ¬
;23 ∥ ;;631 |
224 | 5, 12, 15, 20, 48, 50, 70, 104, 137, 168, 188, 223 | prmlem2 16802 |
1
⊢ ;;631 ∈ ℙ |