MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmlem2 Structured version   Visualization version   GIF version

Theorem prmlem2 16445
Description: Our last proving session got as far as 25 because we started with the two "bootstrap" primes 2 and 3, and the next prime is 5, so knowing that 2 and 3 are prime and 4 is not allows us to cover the numbers less than 5↑2 = 25. Additionally, nonprimes are "easy", so we can extend this range of known prime/nonprimes all the way until 29, which is the first prime larger than 25. Thus, in this lemma we extend another blanket out to 29↑2 = 841, from which we can prove even more primes. If we wanted, we could keep doing this, but the goal is Bertrand's postulate, and for that we only need a few large primes - we don't need to find them all, as we have been doing thus far. So after this blanket runs out, we'll have to switch to another method (see 1259prm 16461).

As a side note, you can see the pattern of the primes in the indentation pattern of this lemma! (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.)

Hypotheses
Ref Expression
prmlem2.n 𝑁 ∈ ℕ
prmlem2.lt 𝑁 < 841
prmlem2.gt 1 < 𝑁
prmlem2.2 ¬ 2 ∥ 𝑁
prmlem2.3 ¬ 3 ∥ 𝑁
prmlem2.5 ¬ 5 ∥ 𝑁
prmlem2.7 ¬ 7 ∥ 𝑁
prmlem2.11 ¬ 11 ∥ 𝑁
prmlem2.13 ¬ 13 ∥ 𝑁
prmlem2.17 ¬ 17 ∥ 𝑁
prmlem2.19 ¬ 19 ∥ 𝑁
prmlem2.23 ¬ 23 ∥ 𝑁
Assertion
Ref Expression
prmlem2 𝑁 ∈ ℙ

Proof of Theorem prmlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmlem2.n . 2 𝑁 ∈ ℕ
2 prmlem2.gt . 2 1 < 𝑁
3 prmlem2.2 . 2 ¬ 2 ∥ 𝑁
4 prmlem2.3 . 2 ¬ 3 ∥ 𝑁
5 eluzelre 12242 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℤ29) → 𝑥 ∈ ℝ)
65resqcld 13607 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (ℤ29) → (𝑥↑2) ∈ ℝ)
7 eluzle 12244 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℤ29) → 29 ≤ 𝑥)
8 2nn0 11902 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℕ0
9 9nn0 11909 . . . . . . . . . . . . . . . . . . . . . . 23 9 ∈ ℕ0
108, 9deccl 12101 . . . . . . . . . . . . . . . . . . . . . 22 29 ∈ ℕ0
1110nn0rei 11896 . . . . . . . . . . . . . . . . . . . . 21 29 ∈ ℝ
1210nn0ge0i 11912 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ 29
13 le2sq2 13496 . . . . . . . . . . . . . . . . . . . . 21 (((29 ∈ ℝ ∧ 0 ≤ 29) ∧ (𝑥 ∈ ℝ ∧ 29 ≤ 𝑥)) → (29↑2) ≤ (𝑥↑2))
1411, 12, 13mpanl12 701 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 29 ≤ 𝑥) → (29↑2) ≤ (𝑥↑2))
155, 7, 14syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (ℤ29) → (29↑2) ≤ (𝑥↑2))
161nnrei 11634 . . . . . . . . . . . . . . . . . . . 20 𝑁 ∈ ℝ
1711resqcli 13545 . . . . . . . . . . . . . . . . . . . 20 (29↑2) ∈ ℝ
18 prmlem2.lt . . . . . . . . . . . . . . . . . . . . . 22 𝑁 < 841
1910nn0cni 11897 . . . . . . . . . . . . . . . . . . . . . . . 24 29 ∈ ℂ
2019sqvali 13539 . . . . . . . . . . . . . . . . . . . . . . 23 (29↑2) = (29 · 29)
21 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . 24 29 = 29
22 1nn0 11901 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℕ0
23 6nn0 11906 . . . . . . . . . . . . . . . . . . . . . . . . 25 6 ∈ ℕ0
248, 23deccl 12101 . . . . . . . . . . . . . . . . . . . . . . . 24 26 ∈ ℕ0
25 5nn0 11905 . . . . . . . . . . . . . . . . . . . . . . . . 25 5 ∈ ℕ0
26 8nn0 11908 . . . . . . . . . . . . . . . . . . . . . . . . 25 8 ∈ ℕ0
27192timesi 11763 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2 · 29) = (29 + 29)
28 2p2e4 11760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (2 + 2) = 4
2928oveq1i 7145 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 + 2) + 1) = (4 + 1)
30 4p1e5 11771 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (4 + 1) = 5
3129, 30eqtri 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((2 + 2) + 1) = 5
32 9p9e18 12180 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (9 + 9) = 18
338, 9, 8, 9, 21, 21, 31, 26, 32decaddc 12141 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (29 + 29) = 58
3427, 33eqtri 2821 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 · 29) = 58
35 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . . 25 26 = 26
36 5p2e7 11781 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (5 + 2) = 7
3736oveq1i 7145 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((5 + 2) + 1) = (7 + 1)
38 7p1e8 11774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (7 + 1) = 8
3937, 38eqtri 2821 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((5 + 2) + 1) = 8
40 4nn0 11904 . . . . . . . . . . . . . . . . . . . . . . . . 25 4 ∈ ℕ0
41 8p6e14 12170 . . . . . . . . . . . . . . . . . . . . . . . . 25 (8 + 6) = 14
4225, 26, 8, 23, 34, 35, 39, 40, 41decaddc 12141 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 · 29) + 26) = 84
43 9t2e18 12208 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (9 · 2) = 18
44 1p1e2 11750 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 + 1) = 2
45 8p8e16 12172 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (8 + 8) = 16
4622, 26, 26, 43, 44, 23, 45decaddci 12147 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((9 · 2) + 8) = 26
47 9t9e81 12215 . . . . . . . . . . . . . . . . . . . . . . . . 25 (9 · 9) = 81
489, 8, 9, 21, 22, 26, 46, 47decmul2c 12152 . . . . . . . . . . . . . . . . . . . . . . . 24 (9 · 29) = 261
4910, 8, 9, 21, 22, 24, 42, 48decmul1c 12151 . . . . . . . . . . . . . . . . . . . . . . 23 (29 · 29) = 841
5020, 49eqtri 2821 . . . . . . . . . . . . . . . . . . . . . 22 (29↑2) = 841
5118, 50breqtrri 5057 . . . . . . . . . . . . . . . . . . . . 21 𝑁 < (29↑2)
52 ltletr 10721 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℝ ∧ (29↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑁 < (29↑2) ∧ (29↑2) ≤ (𝑥↑2)) → 𝑁 < (𝑥↑2)))
5351, 52mpani 695 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℝ ∧ (29↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((29↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2)))
5416, 17, 53mp3an12 1448 . . . . . . . . . . . . . . . . . . 19 ((𝑥↑2) ∈ ℝ → ((29↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2)))
556, 15, 54sylc 65 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℤ29) → 𝑁 < (𝑥↑2))
56 ltnle 10709 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁))
5716, 6, 56sylancr 590 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℤ29) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁))
5855, 57mpbid 235 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℤ29) → ¬ (𝑥↑2) ≤ 𝑁)
5958pm2.21d 121 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℤ29) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁))
6059adantld 494 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℤ29) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
6160adantl 485 . . . . . . . . . . . . . 14 ((¬ 2 ∥ 29 ∧ 𝑥 ∈ (ℤ29)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
62 9nn 11723 . . . . . . . . . . . . . . . 16 9 ∈ ℕ
63 3nn 11704 . . . . . . . . . . . . . . . 16 3 ∈ ℕ
64 1lt9 11831 . . . . . . . . . . . . . . . 16 1 < 9
65 1lt3 11798 . . . . . . . . . . . . . . . 16 1 < 3
66 9t3e27 12209 . . . . . . . . . . . . . . . 16 (9 · 3) = 27
6762, 63, 64, 65, 66nprmi 16023 . . . . . . . . . . . . . . 15 ¬ 27 ∈ ℙ
6867pm2.21i 119 . . . . . . . . . . . . . 14 (27 ∈ ℙ → ¬ 27 ∥ 𝑁)
69 7nn0 11907 . . . . . . . . . . . . . . 15 7 ∈ ℕ0
70 eqid 2798 . . . . . . . . . . . . . . 15 27 = 27
71 7p2e9 11786 . . . . . . . . . . . . . . 15 (7 + 2) = 9
728, 69, 8, 70, 71decaddi 12146 . . . . . . . . . . . . . 14 (27 + 2) = 29
7361, 68, 72prmlem0 16431 . . . . . . . . . . . . 13 ((¬ 2 ∥ 27 ∧ 𝑥 ∈ (ℤ27)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
74 5nn 11711 . . . . . . . . . . . . . . 15 5 ∈ ℕ
75 1lt5 11805 . . . . . . . . . . . . . . 15 1 < 5
76 5t5e25 12189 . . . . . . . . . . . . . . 15 (5 · 5) = 25
7774, 74, 75, 75, 76nprmi 16023 . . . . . . . . . . . . . 14 ¬ 25 ∈ ℙ
7877pm2.21i 119 . . . . . . . . . . . . 13 (25 ∈ ℙ → ¬ 25 ∥ 𝑁)
79 eqid 2798 . . . . . . . . . . . . . 14 25 = 25
808, 25, 8, 79, 36decaddi 12146 . . . . . . . . . . . . 13 (25 + 2) = 27
8173, 78, 80prmlem0 16431 . . . . . . . . . . . 12 ((¬ 2 ∥ 25 ∧ 𝑥 ∈ (ℤ25)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
82 prmlem2.23 . . . . . . . . . . . . 13 ¬ 23 ∥ 𝑁
8382a1i 11 . . . . . . . . . . . 12 (23 ∈ ℙ → ¬ 23 ∥ 𝑁)
84 3nn0 11903 . . . . . . . . . . . . 13 3 ∈ ℕ0
85 eqid 2798 . . . . . . . . . . . . 13 23 = 23
86 3p2e5 11776 . . . . . . . . . . . . 13 (3 + 2) = 5
878, 84, 8, 85, 86decaddi 12146 . . . . . . . . . . . 12 (23 + 2) = 25
8881, 83, 87prmlem0 16431 . . . . . . . . . . 11 ((¬ 2 ∥ 23 ∧ 𝑥 ∈ (ℤ23)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
89 7nn 11717 . . . . . . . . . . . . 13 7 ∈ ℕ
90 1lt7 11816 . . . . . . . . . . . . 13 1 < 7
91 7t3e21 12196 . . . . . . . . . . . . 13 (7 · 3) = 21
9289, 63, 90, 65, 91nprmi 16023 . . . . . . . . . . . 12 ¬ 21 ∈ ℙ
9392pm2.21i 119 . . . . . . . . . . 11 (21 ∈ ℙ → ¬ 21 ∥ 𝑁)
94 eqid 2798 . . . . . . . . . . . 12 21 = 21
95 1p2e3 11768 . . . . . . . . . . . 12 (1 + 2) = 3
968, 22, 8, 94, 95decaddi 12146 . . . . . . . . . . 11 (21 + 2) = 23
9788, 93, 96prmlem0 16431 . . . . . . . . . 10 ((¬ 2 ∥ 21 ∧ 𝑥 ∈ (ℤ21)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
98 prmlem2.19 . . . . . . . . . . 11 ¬ 19 ∥ 𝑁
9998a1i 11 . . . . . . . . . 10 (19 ∈ ℙ → ¬ 19 ∥ 𝑁)
100 eqid 2798 . . . . . . . . . . 11 19 = 19
101 9p2e11 12173 . . . . . . . . . . 11 (9 + 2) = 11
10222, 9, 8, 100, 44, 22, 101decaddci 12147 . . . . . . . . . 10 (19 + 2) = 21
10397, 99, 102prmlem0 16431 . . . . . . . . 9 ((¬ 2 ∥ 19 ∧ 𝑥 ∈ (ℤ19)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
104 prmlem2.17 . . . . . . . . . 10 ¬ 17 ∥ 𝑁
105104a1i 11 . . . . . . . . 9 (17 ∈ ℙ → ¬ 17 ∥ 𝑁)
106 eqid 2798 . . . . . . . . . 10 17 = 17
10722, 69, 8, 106, 71decaddi 12146 . . . . . . . . 9 (17 + 2) = 19
108103, 105, 107prmlem0 16431 . . . . . . . 8 ((¬ 2 ∥ 17 ∧ 𝑥 ∈ (ℤ17)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
109 5t3e15 12187 . . . . . . . . . 10 (5 · 3) = 15
11074, 63, 75, 65, 109nprmi 16023 . . . . . . . . 9 ¬ 15 ∈ ℙ
111110pm2.21i 119 . . . . . . . 8 (15 ∈ ℙ → ¬ 15 ∥ 𝑁)
112 eqid 2798 . . . . . . . . 9 15 = 15
11322, 25, 8, 112, 36decaddi 12146 . . . . . . . 8 (15 + 2) = 17
114108, 111, 113prmlem0 16431 . . . . . . 7 ((¬ 2 ∥ 15 ∧ 𝑥 ∈ (ℤ15)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
115 prmlem2.13 . . . . . . . 8 ¬ 13 ∥ 𝑁
116115a1i 11 . . . . . . 7 (13 ∈ ℙ → ¬ 13 ∥ 𝑁)
117 eqid 2798 . . . . . . . 8 13 = 13
11822, 84, 8, 117, 86decaddi 12146 . . . . . . 7 (13 + 2) = 15
119114, 116, 118prmlem0 16431 . . . . . 6 ((¬ 2 ∥ 13 ∧ 𝑥 ∈ (ℤ13)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
120 prmlem2.11 . . . . . . 7 ¬ 11 ∥ 𝑁
121120a1i 11 . . . . . 6 (11 ∈ ℙ → ¬ 11 ∥ 𝑁)
122 eqid 2798 . . . . . . 7 11 = 11
12322, 22, 8, 122, 95decaddi 12146 . . . . . 6 (11 + 2) = 13
124119, 121, 123prmlem0 16431 . . . . 5 ((¬ 2 ∥ 11 ∧ 𝑥 ∈ (ℤ11)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
125 9nprm 16438 . . . . . 6 ¬ 9 ∈ ℙ
126125pm2.21i 119 . . . . 5 (9 ∈ ℙ → ¬ 9 ∥ 𝑁)
127124, 126, 101prmlem0 16431 . . . 4 ((¬ 2 ∥ 9 ∧ 𝑥 ∈ (ℤ‘9)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
128 prmlem2.7 . . . . 5 ¬ 7 ∥ 𝑁
129128a1i 11 . . . 4 (7 ∈ ℙ → ¬ 7 ∥ 𝑁)
130127, 129, 71prmlem0 16431 . . 3 ((¬ 2 ∥ 7 ∧ 𝑥 ∈ (ℤ‘7)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
131 prmlem2.5 . . . 4 ¬ 5 ∥ 𝑁
132131a1i 11 . . 3 (5 ∈ ℙ → ¬ 5 ∥ 𝑁)
133130, 132, 36prmlem0 16431 . 2 ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
1341, 2, 3, 4, 133prmlem1a 16432 1 𝑁 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084  wcel 2111  cdif 3878  {csn 4525   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cn 11625  2c2 11680  3c3 11681  4c4 11682  5c5 11683  6c6 11684  7c7 11685  8c8 11686  9c9 11687  cdc 12086  cuz 12231  cexp 13425  cdvds 15599  cprime 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16006
This theorem is referenced by:  37prm  16446  43prm  16447  83prm  16448  139prm  16449  163prm  16450  317prm  16451  631prm  16452  257prm  44078  139prmALT  44113  127prm  44116
  Copyright terms: Public domain W3C validator