Step | Hyp | Ref
| Expression |
1 | | prmlem2.n |
. 2
⊢ 𝑁 ∈ ℕ |
2 | | prmlem2.gt |
. 2
⊢ 1 <
𝑁 |
3 | | prmlem2.2 |
. 2
⊢ ¬ 2
∥ 𝑁 |
4 | | prmlem2.3 |
. 2
⊢ ¬ 3
∥ 𝑁 |
5 | | eluzelre 12643 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈
(ℤ≥‘;29)
→ 𝑥 ∈
ℝ) |
6 | 5 | resqcld 14015 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈
(ℤ≥‘;29)
→ (𝑥↑2) ∈
ℝ) |
7 | | eluzle 12645 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈
(ℤ≥‘;29)
→ ;29 ≤ 𝑥) |
8 | | 2nn0 12300 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 2 ∈
ℕ0 |
9 | | 9nn0 12307 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 9 ∈
ℕ0 |
10 | 8, 9 | deccl 12502 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ;29 ∈
ℕ0 |
11 | 10 | nn0rei 12294 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ;29 ∈ ℝ |
12 | 10 | nn0ge0i 12310 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ≤
;29 |
13 | | le2sq2 13904 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((;29 ∈ ℝ ∧ 0 ≤ ;29) ∧ (𝑥 ∈ ℝ ∧ ;29 ≤ 𝑥)) → (;29↑2) ≤ (𝑥↑2)) |
14 | 11, 12, 13 | mpanl12 700 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ℝ ∧ ;29 ≤ 𝑥) → (;29↑2) ≤ (𝑥↑2)) |
15 | 5, 7, 14 | syl2anc 585 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈
(ℤ≥‘;29)
→ (;29↑2) ≤ (𝑥↑2)) |
16 | 1 | nnrei 12032 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑁 ∈ ℝ |
17 | 11 | resqcli 13953 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (;29↑2) ∈
ℝ |
18 | | prmlem2.lt |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑁 < ;;841 |
19 | 10 | nn0cni 12295 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ;29 ∈ ℂ |
20 | 19 | sqvali 13947 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (;29↑2) = (;29 · ;29) |
21 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ;29 = ;29 |
22 | | 1nn0 12299 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℕ0 |
23 | | 6nn0 12304 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 6 ∈
ℕ0 |
24 | 8, 23 | deccl 12502 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ;26 ∈
ℕ0 |
25 | | 5nn0 12303 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 5 ∈
ℕ0 |
26 | | 8nn0 12306 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 8 ∈
ℕ0 |
27 | 19 | 2timesi 12161 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (2
· ;29) = (;29 + ;29) |
28 | | 2p2e4 12158 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (2 + 2) =
4 |
29 | 28 | oveq1i 7317 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((2 + 2)
+ 1) = (4 + 1) |
30 | | 4p1e5 12169 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (4 + 1) =
5 |
31 | 29, 30 | eqtri 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((2 + 2)
+ 1) = 5 |
32 | | 9p9e18 12581 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (9 + 9) =
;18 |
33 | 8, 9, 8, 9, 21, 21, 31, 26, 32 | decaddc 12542 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (;29 + ;29) = ;58 |
34 | 27, 33 | eqtri 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (2
· ;29) = ;58 |
35 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ;26 = ;26 |
36 | | 5p2e7 12179 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (5 + 2) =
7 |
37 | 36 | oveq1i 7317 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((5 + 2)
+ 1) = (7 + 1) |
38 | | 7p1e8 12172 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (7 + 1) =
8 |
39 | 37, 38 | eqtri 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((5 + 2)
+ 1) = 8 |
40 | | 4nn0 12302 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 4 ∈
ℕ0 |
41 | | 8p6e14 12571 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (8 + 6) =
;14 |
42 | 25, 26, 8, 23, 34, 35, 39, 40, 41 | decaddc 12542 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((2
· ;29) + ;26) = ;84 |
43 | | 9t2e18 12609 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (9
· 2) = ;18 |
44 | | 1p1e2 12148 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (1 + 1) =
2 |
45 | | 8p8e16 12573 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (8 + 8) =
;16 |
46 | 22, 26, 26, 43, 44, 23, 45 | decaddci 12548 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((9
· 2) + 8) = ;26 |
47 | | 9t9e81 12616 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (9
· 9) = ;81 |
48 | 9, 8, 9, 21, 22, 26, 46, 47 | decmul2c 12553 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (9
· ;29) = ;;261 |
49 | 10, 8, 9, 21, 22, 24, 42, 48 | decmul1c 12552 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (;29 · ;29) = ;;841 |
50 | 20, 49 | eqtri 2764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (;29↑2) = ;;841 |
51 | 18, 50 | breqtrri 5108 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑁 < (;29↑2) |
52 | | ltletr 11117 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℝ ∧ (;29↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) →
((𝑁 < (;29↑2) ∧ (;29↑2) ≤ (𝑥↑2)) → 𝑁 < (𝑥↑2))) |
53 | 51, 52 | mpani 694 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℝ ∧ (;29↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) →
((;29↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2))) |
54 | 16, 17, 53 | mp3an12 1451 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥↑2) ∈ ℝ →
((;29↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2))) |
55 | 6, 15, 54 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈
(ℤ≥‘;29)
→ 𝑁 < (𝑥↑2)) |
56 | | ltnle 11104 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) →
(𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁)) |
57 | 16, 6, 56 | sylancr 588 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈
(ℤ≥‘;29)
→ (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁)) |
58 | 55, 57 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈
(ℤ≥‘;29)
→ ¬ (𝑥↑2)
≤ 𝑁) |
59 | 58 | pm2.21d 121 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈
(ℤ≥‘;29)
→ ((𝑥↑2) ≤
𝑁 → ¬ 𝑥 ∥ 𝑁)) |
60 | 59 | adantld 492 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈
(ℤ≥‘;29)
→ ((𝑥 ∈ (ℙ
∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
61 | 60 | adantl 483 |
. . . . . . . . . . . . . 14
⊢ ((¬ 2
∥ ;29 ∧ 𝑥 ∈
(ℤ≥‘;29)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
62 | | 9nn 12121 |
. . . . . . . . . . . . . . . 16
⊢ 9 ∈
ℕ |
63 | | 3nn 12102 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℕ |
64 | | 1lt9 12229 |
. . . . . . . . . . . . . . . 16
⊢ 1 <
9 |
65 | | 1lt3 12196 |
. . . . . . . . . . . . . . . 16
⊢ 1 <
3 |
66 | | 9t3e27 12610 |
. . . . . . . . . . . . . . . 16
⊢ (9
· 3) = ;27 |
67 | 62, 63, 64, 65, 66 | nprmi 16443 |
. . . . . . . . . . . . . . 15
⊢ ¬
;27 ∈
ℙ |
68 | 67 | pm2.21i 119 |
. . . . . . . . . . . . . 14
⊢ (;27 ∈ ℙ → ¬ ;27 ∥ 𝑁) |
69 | | 7nn0 12305 |
. . . . . . . . . . . . . . 15
⊢ 7 ∈
ℕ0 |
70 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢ ;27 = ;27 |
71 | | 7p2e9 12184 |
. . . . . . . . . . . . . . 15
⊢ (7 + 2) =
9 |
72 | 8, 69, 8, 70, 71 | decaddi 12547 |
. . . . . . . . . . . . . 14
⊢ (;27 + 2) = ;29 |
73 | 61, 68, 72 | prmlem0 16856 |
. . . . . . . . . . . . 13
⊢ ((¬ 2
∥ ;27 ∧ 𝑥 ∈
(ℤ≥‘;27)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
74 | | 5nn 12109 |
. . . . . . . . . . . . . . 15
⊢ 5 ∈
ℕ |
75 | | 1lt5 12203 |
. . . . . . . . . . . . . . 15
⊢ 1 <
5 |
76 | | 5t5e25 12590 |
. . . . . . . . . . . . . . 15
⊢ (5
· 5) = ;25 |
77 | 74, 74, 75, 75, 76 | nprmi 16443 |
. . . . . . . . . . . . . 14
⊢ ¬
;25 ∈
ℙ |
78 | 77 | pm2.21i 119 |
. . . . . . . . . . . . 13
⊢ (;25 ∈ ℙ → ¬ ;25 ∥ 𝑁) |
79 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ ;25 = ;25 |
80 | 8, 25, 8, 79, 36 | decaddi 12547 |
. . . . . . . . . . . . 13
⊢ (;25 + 2) = ;27 |
81 | 73, 78, 80 | prmlem0 16856 |
. . . . . . . . . . . 12
⊢ ((¬ 2
∥ ;25 ∧ 𝑥 ∈
(ℤ≥‘;25)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
82 | | prmlem2.23 |
. . . . . . . . . . . . 13
⊢ ¬
;23 ∥ 𝑁 |
83 | 82 | a1i 11 |
. . . . . . . . . . . 12
⊢ (;23 ∈ ℙ → ¬ ;23 ∥ 𝑁) |
84 | | 3nn0 12301 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℕ0 |
85 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢ ;23 = ;23 |
86 | | 3p2e5 12174 |
. . . . . . . . . . . . 13
⊢ (3 + 2) =
5 |
87 | 8, 84, 8, 85, 86 | decaddi 12547 |
. . . . . . . . . . . 12
⊢ (;23 + 2) = ;25 |
88 | 81, 83, 87 | prmlem0 16856 |
. . . . . . . . . . 11
⊢ ((¬ 2
∥ ;23 ∧ 𝑥 ∈
(ℤ≥‘;23)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
89 | | 7nn 12115 |
. . . . . . . . . . . . 13
⊢ 7 ∈
ℕ |
90 | | 1lt7 12214 |
. . . . . . . . . . . . 13
⊢ 1 <
7 |
91 | | 7t3e21 12597 |
. . . . . . . . . . . . 13
⊢ (7
· 3) = ;21 |
92 | 89, 63, 90, 65, 91 | nprmi 16443 |
. . . . . . . . . . . 12
⊢ ¬
;21 ∈
ℙ |
93 | 92 | pm2.21i 119 |
. . . . . . . . . . 11
⊢ (;21 ∈ ℙ → ¬ ;21 ∥ 𝑁) |
94 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ ;21 = ;21 |
95 | | 1p2e3 12166 |
. . . . . . . . . . . 12
⊢ (1 + 2) =
3 |
96 | 8, 22, 8, 94, 95 | decaddi 12547 |
. . . . . . . . . . 11
⊢ (;21 + 2) = ;23 |
97 | 88, 93, 96 | prmlem0 16856 |
. . . . . . . . . 10
⊢ ((¬ 2
∥ ;21 ∧ 𝑥 ∈
(ℤ≥‘;21)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
98 | | prmlem2.19 |
. . . . . . . . . . 11
⊢ ¬
;19 ∥ 𝑁 |
99 | 98 | a1i 11 |
. . . . . . . . . 10
⊢ (;19 ∈ ℙ → ¬ ;19 ∥ 𝑁) |
100 | | eqid 2736 |
. . . . . . . . . . 11
⊢ ;19 = ;19 |
101 | | 9p2e11 12574 |
. . . . . . . . . . 11
⊢ (9 + 2) =
;11 |
102 | 22, 9, 8, 100, 44, 22, 101 | decaddci 12548 |
. . . . . . . . . 10
⊢ (;19 + 2) = ;21 |
103 | 97, 99, 102 | prmlem0 16856 |
. . . . . . . . 9
⊢ ((¬ 2
∥ ;19 ∧ 𝑥 ∈
(ℤ≥‘;19)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
104 | | prmlem2.17 |
. . . . . . . . . 10
⊢ ¬
;17 ∥ 𝑁 |
105 | 104 | a1i 11 |
. . . . . . . . 9
⊢ (;17 ∈ ℙ → ¬ ;17 ∥ 𝑁) |
106 | | eqid 2736 |
. . . . . . . . . 10
⊢ ;17 = ;17 |
107 | 22, 69, 8, 106, 71 | decaddi 12547 |
. . . . . . . . 9
⊢ (;17 + 2) = ;19 |
108 | 103, 105,
107 | prmlem0 16856 |
. . . . . . . 8
⊢ ((¬ 2
∥ ;17 ∧ 𝑥 ∈
(ℤ≥‘;17)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
109 | | 5t3e15 12588 |
. . . . . . . . . 10
⊢ (5
· 3) = ;15 |
110 | 74, 63, 75, 65, 109 | nprmi 16443 |
. . . . . . . . 9
⊢ ¬
;15 ∈
ℙ |
111 | 110 | pm2.21i 119 |
. . . . . . . 8
⊢ (;15 ∈ ℙ → ¬ ;15 ∥ 𝑁) |
112 | | eqid 2736 |
. . . . . . . . 9
⊢ ;15 = ;15 |
113 | 22, 25, 8, 112, 36 | decaddi 12547 |
. . . . . . . 8
⊢ (;15 + 2) = ;17 |
114 | 108, 111,
113 | prmlem0 16856 |
. . . . . . 7
⊢ ((¬ 2
∥ ;15 ∧ 𝑥 ∈
(ℤ≥‘;15)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
115 | | prmlem2.13 |
. . . . . . . 8
⊢ ¬
;13 ∥ 𝑁 |
116 | 115 | a1i 11 |
. . . . . . 7
⊢ (;13 ∈ ℙ → ¬ ;13 ∥ 𝑁) |
117 | | eqid 2736 |
. . . . . . . 8
⊢ ;13 = ;13 |
118 | 22, 84, 8, 117, 86 | decaddi 12547 |
. . . . . . 7
⊢ (;13 + 2) = ;15 |
119 | 114, 116,
118 | prmlem0 16856 |
. . . . . 6
⊢ ((¬ 2
∥ ;13 ∧ 𝑥 ∈
(ℤ≥‘;13)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
120 | | prmlem2.11 |
. . . . . . 7
⊢ ¬
;11 ∥ 𝑁 |
121 | 120 | a1i 11 |
. . . . . 6
⊢ (;11 ∈ ℙ → ¬ ;11 ∥ 𝑁) |
122 | | eqid 2736 |
. . . . . . 7
⊢ ;11 = ;11 |
123 | 22, 22, 8, 122, 95 | decaddi 12547 |
. . . . . 6
⊢ (;11 + 2) = ;13 |
124 | 119, 121,
123 | prmlem0 16856 |
. . . . 5
⊢ ((¬ 2
∥ ;11 ∧ 𝑥 ∈
(ℤ≥‘;11)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
125 | | 9nprm 16863 |
. . . . . 6
⊢ ¬ 9
∈ ℙ |
126 | 125 | pm2.21i 119 |
. . . . 5
⊢ (9 ∈
ℙ → ¬ 9 ∥ 𝑁) |
127 | 124, 126,
101 | prmlem0 16856 |
. . . 4
⊢ ((¬ 2
∥ 9 ∧ 𝑥 ∈
(ℤ≥‘9)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
128 | | prmlem2.7 |
. . . . 5
⊢ ¬ 7
∥ 𝑁 |
129 | 128 | a1i 11 |
. . . 4
⊢ (7 ∈
ℙ → ¬ 7 ∥ 𝑁) |
130 | 127, 129,
71 | prmlem0 16856 |
. . 3
⊢ ((¬ 2
∥ 7 ∧ 𝑥 ∈
(ℤ≥‘7)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
131 | | prmlem2.5 |
. . . 4
⊢ ¬ 5
∥ 𝑁 |
132 | 131 | a1i 11 |
. . 3
⊢ (5 ∈
ℙ → ¬ 5 ∥ 𝑁) |
133 | 130, 132,
36 | prmlem0 16856 |
. 2
⊢ ((¬ 2
∥ 5 ∧ 𝑥 ∈
(ℤ≥‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
134 | 1, 2, 3, 4, 133 | prmlem1a 16857 |
1
⊢ 𝑁 ∈ ℙ |