MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmlem2 Structured version   Visualization version   GIF version

Theorem prmlem2 17157
Description: Our last proving session got as far as 25 because we started with the two "bootstrap" primes 2 and 3, and the next prime is 5, so knowing that 2 and 3 are prime and 4 is not allows to cover the numbers less than 5↑2 = 25. Additionally, nonprimes are "easy", so we can extend this range of known prime/nonprimes all the way until 29, which is the first prime larger than 25. Thus, in this lemma we extend another blanket out to 29↑2 = 841, from which we can prove even more primes. If we wanted, we could keep doing this, but the goal is Bertrand's postulate, and for that we only need a few large primes - we don't need to find them all, as we have been doing thus far. So after this blanket runs out, we'll have to switch to another method (see 1259prm 17173).

As a side note, you can see the pattern of the primes in the indentation pattern of this lemma! (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.)

Hypotheses
Ref Expression
prmlem2.n 𝑁 ∈ ℕ
prmlem2.lt 𝑁 < 841
prmlem2.gt 1 < 𝑁
prmlem2.2 ¬ 2 ∥ 𝑁
prmlem2.3 ¬ 3 ∥ 𝑁
prmlem2.5 ¬ 5 ∥ 𝑁
prmlem2.7 ¬ 7 ∥ 𝑁
prmlem2.11 ¬ 11 ∥ 𝑁
prmlem2.13 ¬ 13 ∥ 𝑁
prmlem2.17 ¬ 17 ∥ 𝑁
prmlem2.19 ¬ 19 ∥ 𝑁
prmlem2.23 ¬ 23 ∥ 𝑁
Assertion
Ref Expression
prmlem2 𝑁 ∈ ℙ

Proof of Theorem prmlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmlem2.n . 2 𝑁 ∈ ℕ
2 prmlem2.gt . 2 1 < 𝑁
3 prmlem2.2 . 2 ¬ 2 ∥ 𝑁
4 prmlem2.3 . 2 ¬ 3 ∥ 𝑁
5 eluzelre 12889 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℤ29) → 𝑥 ∈ ℝ)
65resqcld 14165 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (ℤ29) → (𝑥↑2) ∈ ℝ)
7 eluzle 12891 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℤ29) → 29 ≤ 𝑥)
8 2nn0 12543 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℕ0
9 9nn0 12550 . . . . . . . . . . . . . . . . . . . . . . 23 9 ∈ ℕ0
108, 9deccl 12748 . . . . . . . . . . . . . . . . . . . . . 22 29 ∈ ℕ0
1110nn0rei 12537 . . . . . . . . . . . . . . . . . . . . 21 29 ∈ ℝ
1210nn0ge0i 12553 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ 29
13 le2sq2 14175 . . . . . . . . . . . . . . . . . . . . 21 (((29 ∈ ℝ ∧ 0 ≤ 29) ∧ (𝑥 ∈ ℝ ∧ 29 ≤ 𝑥)) → (29↑2) ≤ (𝑥↑2))
1411, 12, 13mpanl12 702 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 29 ≤ 𝑥) → (29↑2) ≤ (𝑥↑2))
155, 7, 14syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (ℤ29) → (29↑2) ≤ (𝑥↑2))
161nnrei 12275 . . . . . . . . . . . . . . . . . . . 20 𝑁 ∈ ℝ
1711resqcli 14225 . . . . . . . . . . . . . . . . . . . 20 (29↑2) ∈ ℝ
18 prmlem2.lt . . . . . . . . . . . . . . . . . . . . . 22 𝑁 < 841
1910nn0cni 12538 . . . . . . . . . . . . . . . . . . . . . . . 24 29 ∈ ℂ
2019sqvali 14219 . . . . . . . . . . . . . . . . . . . . . . 23 (29↑2) = (29 · 29)
21 eqid 2737 . . . . . . . . . . . . . . . . . . . . . . . 24 29 = 29
22 1nn0 12542 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℕ0
23 6nn0 12547 . . . . . . . . . . . . . . . . . . . . . . . . 25 6 ∈ ℕ0
248, 23deccl 12748 . . . . . . . . . . . . . . . . . . . . . . . 24 26 ∈ ℕ0
25 5nn0 12546 . . . . . . . . . . . . . . . . . . . . . . . . 25 5 ∈ ℕ0
26 8nn0 12549 . . . . . . . . . . . . . . . . . . . . . . . . 25 8 ∈ ℕ0
27192timesi 12404 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2 · 29) = (29 + 29)
28 2p2e4 12401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (2 + 2) = 4
2928oveq1i 7441 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 + 2) + 1) = (4 + 1)
30 4p1e5 12412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (4 + 1) = 5
3129, 30eqtri 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((2 + 2) + 1) = 5
32 9p9e18 12827 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (9 + 9) = 18
338, 9, 8, 9, 21, 21, 31, 26, 32decaddc 12788 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (29 + 29) = 58
3427, 33eqtri 2765 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 · 29) = 58
35 eqid 2737 . . . . . . . . . . . . . . . . . . . . . . . . 25 26 = 26
36 5p2e7 12422 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (5 + 2) = 7
3736oveq1i 7441 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((5 + 2) + 1) = (7 + 1)
38 7p1e8 12415 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (7 + 1) = 8
3937, 38eqtri 2765 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((5 + 2) + 1) = 8
40 4nn0 12545 . . . . . . . . . . . . . . . . . . . . . . . . 25 4 ∈ ℕ0
41 8p6e14 12817 . . . . . . . . . . . . . . . . . . . . . . . . 25 (8 + 6) = 14
4225, 26, 8, 23, 34, 35, 39, 40, 41decaddc 12788 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 · 29) + 26) = 84
43 9t2e18 12855 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (9 · 2) = 18
44 1p1e2 12391 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 + 1) = 2
45 8p8e16 12819 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (8 + 8) = 16
4622, 26, 26, 43, 44, 23, 45decaddci 12794 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((9 · 2) + 8) = 26
47 9t9e81 12862 . . . . . . . . . . . . . . . . . . . . . . . . 25 (9 · 9) = 81
489, 8, 9, 21, 22, 26, 46, 47decmul2c 12799 . . . . . . . . . . . . . . . . . . . . . . . 24 (9 · 29) = 261
4910, 8, 9, 21, 22, 24, 42, 48decmul1c 12798 . . . . . . . . . . . . . . . . . . . . . . 23 (29 · 29) = 841
5020, 49eqtri 2765 . . . . . . . . . . . . . . . . . . . . . 22 (29↑2) = 841
5118, 50breqtrri 5170 . . . . . . . . . . . . . . . . . . . . 21 𝑁 < (29↑2)
52 ltletr 11353 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℝ ∧ (29↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑁 < (29↑2) ∧ (29↑2) ≤ (𝑥↑2)) → 𝑁 < (𝑥↑2)))
5351, 52mpani 696 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℝ ∧ (29↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((29↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2)))
5416, 17, 53mp3an12 1453 . . . . . . . . . . . . . . . . . . 19 ((𝑥↑2) ∈ ℝ → ((29↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2)))
556, 15, 54sylc 65 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℤ29) → 𝑁 < (𝑥↑2))
56 ltnle 11340 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁))
5716, 6, 56sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℤ29) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁))
5855, 57mpbid 232 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℤ29) → ¬ (𝑥↑2) ≤ 𝑁)
5958pm2.21d 121 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℤ29) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥𝑁))
6059adantld 490 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℤ29) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
6160adantl 481 . . . . . . . . . . . . . 14 ((¬ 2 ∥ 29 ∧ 𝑥 ∈ (ℤ29)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
62 9nn 12364 . . . . . . . . . . . . . . . 16 9 ∈ ℕ
63 3nn 12345 . . . . . . . . . . . . . . . 16 3 ∈ ℕ
64 1lt9 12472 . . . . . . . . . . . . . . . 16 1 < 9
65 1lt3 12439 . . . . . . . . . . . . . . . 16 1 < 3
66 9t3e27 12856 . . . . . . . . . . . . . . . 16 (9 · 3) = 27
6762, 63, 64, 65, 66nprmi 16726 . . . . . . . . . . . . . . 15 ¬ 27 ∈ ℙ
6867pm2.21i 119 . . . . . . . . . . . . . 14 (27 ∈ ℙ → ¬ 27 ∥ 𝑁)
69 7nn0 12548 . . . . . . . . . . . . . . 15 7 ∈ ℕ0
70 eqid 2737 . . . . . . . . . . . . . . 15 27 = 27
71 7p2e9 12427 . . . . . . . . . . . . . . 15 (7 + 2) = 9
728, 69, 8, 70, 71decaddi 12793 . . . . . . . . . . . . . 14 (27 + 2) = 29
7361, 68, 72prmlem0 17143 . . . . . . . . . . . . 13 ((¬ 2 ∥ 27 ∧ 𝑥 ∈ (ℤ27)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
74 5nn 12352 . . . . . . . . . . . . . . 15 5 ∈ ℕ
75 1lt5 12446 . . . . . . . . . . . . . . 15 1 < 5
76 5t5e25 12836 . . . . . . . . . . . . . . 15 (5 · 5) = 25
7774, 74, 75, 75, 76nprmi 16726 . . . . . . . . . . . . . 14 ¬ 25 ∈ ℙ
7877pm2.21i 119 . . . . . . . . . . . . 13 (25 ∈ ℙ → ¬ 25 ∥ 𝑁)
79 eqid 2737 . . . . . . . . . . . . . 14 25 = 25
808, 25, 8, 79, 36decaddi 12793 . . . . . . . . . . . . 13 (25 + 2) = 27
8173, 78, 80prmlem0 17143 . . . . . . . . . . . 12 ((¬ 2 ∥ 25 ∧ 𝑥 ∈ (ℤ25)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
82 prmlem2.23 . . . . . . . . . . . . 13 ¬ 23 ∥ 𝑁
8382a1i 11 . . . . . . . . . . . 12 (23 ∈ ℙ → ¬ 23 ∥ 𝑁)
84 3nn0 12544 . . . . . . . . . . . . 13 3 ∈ ℕ0
85 eqid 2737 . . . . . . . . . . . . 13 23 = 23
86 3p2e5 12417 . . . . . . . . . . . . 13 (3 + 2) = 5
878, 84, 8, 85, 86decaddi 12793 . . . . . . . . . . . 12 (23 + 2) = 25
8881, 83, 87prmlem0 17143 . . . . . . . . . . 11 ((¬ 2 ∥ 23 ∧ 𝑥 ∈ (ℤ23)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
89 7nn 12358 . . . . . . . . . . . . 13 7 ∈ ℕ
90 1lt7 12457 . . . . . . . . . . . . 13 1 < 7
91 7t3e21 12843 . . . . . . . . . . . . 13 (7 · 3) = 21
9289, 63, 90, 65, 91nprmi 16726 . . . . . . . . . . . 12 ¬ 21 ∈ ℙ
9392pm2.21i 119 . . . . . . . . . . 11 (21 ∈ ℙ → ¬ 21 ∥ 𝑁)
94 eqid 2737 . . . . . . . . . . . 12 21 = 21
95 1p2e3 12409 . . . . . . . . . . . 12 (1 + 2) = 3
968, 22, 8, 94, 95decaddi 12793 . . . . . . . . . . 11 (21 + 2) = 23
9788, 93, 96prmlem0 17143 . . . . . . . . . 10 ((¬ 2 ∥ 21 ∧ 𝑥 ∈ (ℤ21)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
98 prmlem2.19 . . . . . . . . . . 11 ¬ 19 ∥ 𝑁
9998a1i 11 . . . . . . . . . 10 (19 ∈ ℙ → ¬ 19 ∥ 𝑁)
100 eqid 2737 . . . . . . . . . . 11 19 = 19
101 9p2e11 12820 . . . . . . . . . . 11 (9 + 2) = 11
10222, 9, 8, 100, 44, 22, 101decaddci 12794 . . . . . . . . . 10 (19 + 2) = 21
10397, 99, 102prmlem0 17143 . . . . . . . . 9 ((¬ 2 ∥ 19 ∧ 𝑥 ∈ (ℤ19)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
104 prmlem2.17 . . . . . . . . . 10 ¬ 17 ∥ 𝑁
105104a1i 11 . . . . . . . . 9 (17 ∈ ℙ → ¬ 17 ∥ 𝑁)
106 eqid 2737 . . . . . . . . . 10 17 = 17
10722, 69, 8, 106, 71decaddi 12793 . . . . . . . . 9 (17 + 2) = 19
108103, 105, 107prmlem0 17143 . . . . . . . 8 ((¬ 2 ∥ 17 ∧ 𝑥 ∈ (ℤ17)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
109 5t3e15 12834 . . . . . . . . . 10 (5 · 3) = 15
11074, 63, 75, 65, 109nprmi 16726 . . . . . . . . 9 ¬ 15 ∈ ℙ
111110pm2.21i 119 . . . . . . . 8 (15 ∈ ℙ → ¬ 15 ∥ 𝑁)
112 eqid 2737 . . . . . . . . 9 15 = 15
11322, 25, 8, 112, 36decaddi 12793 . . . . . . . 8 (15 + 2) = 17
114108, 111, 113prmlem0 17143 . . . . . . 7 ((¬ 2 ∥ 15 ∧ 𝑥 ∈ (ℤ15)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
115 prmlem2.13 . . . . . . . 8 ¬ 13 ∥ 𝑁
116115a1i 11 . . . . . . 7 (13 ∈ ℙ → ¬ 13 ∥ 𝑁)
117 eqid 2737 . . . . . . . 8 13 = 13
11822, 84, 8, 117, 86decaddi 12793 . . . . . . 7 (13 + 2) = 15
119114, 116, 118prmlem0 17143 . . . . . 6 ((¬ 2 ∥ 13 ∧ 𝑥 ∈ (ℤ13)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
120 prmlem2.11 . . . . . . 7 ¬ 11 ∥ 𝑁
121120a1i 11 . . . . . 6 (11 ∈ ℙ → ¬ 11 ∥ 𝑁)
122 eqid 2737 . . . . . . 7 11 = 11
12322, 22, 8, 122, 95decaddi 12793 . . . . . 6 (11 + 2) = 13
124119, 121, 123prmlem0 17143 . . . . 5 ((¬ 2 ∥ 11 ∧ 𝑥 ∈ (ℤ11)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
125 9nprm 17150 . . . . . 6 ¬ 9 ∈ ℙ
126125pm2.21i 119 . . . . 5 (9 ∈ ℙ → ¬ 9 ∥ 𝑁)
127124, 126, 101prmlem0 17143 . . . 4 ((¬ 2 ∥ 9 ∧ 𝑥 ∈ (ℤ‘9)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
128 prmlem2.7 . . . . 5 ¬ 7 ∥ 𝑁
129128a1i 11 . . . 4 (7 ∈ ℙ → ¬ 7 ∥ 𝑁)
130127, 129, 71prmlem0 17143 . . 3 ((¬ 2 ∥ 7 ∧ 𝑥 ∈ (ℤ‘7)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
131 prmlem2.5 . . . 4 ¬ 5 ∥ 𝑁
132131a1i 11 . . 3 (5 ∈ ℙ → ¬ 5 ∥ 𝑁)
133130, 132, 36prmlem0 17143 . 2 ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
1341, 2, 3, 4, 133prmlem1a 17144 1 𝑁 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  cdif 3948  {csn 4626   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cn 12266  2c2 12321  3c3 12322  4c4 12323  5c5 12324  6c6 12325  7c7 12326  8c8 12327  9c9 12328  cdc 12733  cuz 12878  cexp 14102  cdvds 16290  cprime 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-prm 16709
This theorem is referenced by:  37prm  17158  43prm  17159  83prm  17160  139prm  17161  163prm  17162  317prm  17163  631prm  17164  257prm  47548  139prmALT  47583  127prm  47586
  Copyright terms: Public domain W3C validator