Proof of Theorem 163prm
Step | Hyp | Ref
| Expression |
1 | | 1nn0 12179 |
. . . 4
⊢ 1 ∈
ℕ0 |
2 | | 6nn0 12184 |
. . . 4
⊢ 6 ∈
ℕ0 |
3 | 1, 2 | deccl 12381 |
. . 3
⊢ ;16 ∈
ℕ0 |
4 | | 3nn 11982 |
. . 3
⊢ 3 ∈
ℕ |
5 | 3, 4 | decnncl 12386 |
. 2
⊢ ;;163 ∈ ℕ |
6 | | 8nn0 12186 |
. . 3
⊢ 8 ∈
ℕ0 |
7 | | 4nn0 12182 |
. . 3
⊢ 4 ∈
ℕ0 |
8 | | 3nn0 12181 |
. . 3
⊢ 3 ∈
ℕ0 |
9 | | 1lt8 12101 |
. . 3
⊢ 1 <
8 |
10 | | 6lt10 12500 |
. . 3
⊢ 6 <
;10 |
11 | | 3lt10 12503 |
. . 3
⊢ 3 <
;10 |
12 | 1, 6, 2, 7, 8, 1, 9, 10, 11 | 3decltc 12399 |
. 2
⊢ ;;163 < ;;841 |
13 | | 6nn 11992 |
. . . 4
⊢ 6 ∈
ℕ |
14 | 1, 13 | decnncl 12386 |
. . 3
⊢ ;16 ∈ ℕ |
15 | | 1lt10 12505 |
. . 3
⊢ 1 <
;10 |
16 | 14, 8, 1, 15 | declti 12404 |
. 2
⊢ 1 <
;;163 |
17 | | 2cn 11978 |
. . . 4
⊢ 2 ∈
ℂ |
18 | 17 | mulid2i 10911 |
. . 3
⊢ (1
· 2) = 2 |
19 | | df-3 11967 |
. . 3
⊢ 3 = (2 +
1) |
20 | 3, 1, 18, 19 | dec2dvds 16692 |
. 2
⊢ ¬ 2
∥ ;;163 |
21 | | 5nn0 12183 |
. . . 4
⊢ 5 ∈
ℕ0 |
22 | 21, 7 | deccl 12381 |
. . 3
⊢ ;54 ∈
ℕ0 |
23 | | 1nn 11914 |
. . 3
⊢ 1 ∈
ℕ |
24 | | 0nn0 12178 |
. . . 4
⊢ 0 ∈
ℕ0 |
25 | | eqid 2738 |
. . . 4
⊢ ;54 = ;54 |
26 | 1 | dec0h 12388 |
. . . 4
⊢ 1 = ;01 |
27 | | ax-1cn 10860 |
. . . . . . 7
⊢ 1 ∈
ℂ |
28 | 27 | addid2i 11093 |
. . . . . 6
⊢ (0 + 1) =
1 |
29 | 28 | oveq2i 7266 |
. . . . 5
⊢ ((3
· 5) + (0 + 1)) = ((3 · 5) + 1) |
30 | | 5p1e6 12050 |
. . . . . 6
⊢ (5 + 1) =
6 |
31 | | 5cn 11991 |
. . . . . . 7
⊢ 5 ∈
ℂ |
32 | | 3cn 11984 |
. . . . . . 7
⊢ 3 ∈
ℂ |
33 | | 5t3e15 12467 |
. . . . . . 7
⊢ (5
· 3) = ;15 |
34 | 31, 32, 33 | mulcomli 10915 |
. . . . . 6
⊢ (3
· 5) = ;15 |
35 | 1, 21, 30, 34 | decsuc 12397 |
. . . . 5
⊢ ((3
· 5) + 1) = ;16 |
36 | 29, 35 | eqtri 2766 |
. . . 4
⊢ ((3
· 5) + (0 + 1)) = ;16 |
37 | | 2nn0 12180 |
. . . . 5
⊢ 2 ∈
ℕ0 |
38 | | 2p1e3 12045 |
. . . . 5
⊢ (2 + 1) =
3 |
39 | | 4cn 11988 |
. . . . . 6
⊢ 4 ∈
ℂ |
40 | | 4t3e12 12464 |
. . . . . 6
⊢ (4
· 3) = ;12 |
41 | 39, 32, 40 | mulcomli 10915 |
. . . . 5
⊢ (3
· 4) = ;12 |
42 | 1, 37, 38, 41 | decsuc 12397 |
. . . 4
⊢ ((3
· 4) + 1) = ;13 |
43 | 21, 7, 24, 1, 25, 26, 8, 8, 1,
36, 42 | decma2c 12419 |
. . 3
⊢ ((3
· ;54) + 1) = ;;163 |
44 | | 1lt3 12076 |
. . 3
⊢ 1 <
3 |
45 | 4, 22, 23, 43, 44 | ndvdsi 16049 |
. 2
⊢ ¬ 3
∥ ;;163 |
46 | | 3lt5 12081 |
. . 3
⊢ 3 <
5 |
47 | 3, 4, 46 | dec5dvds 16693 |
. 2
⊢ ¬ 5
∥ ;;163 |
48 | | 7nn 11995 |
. . 3
⊢ 7 ∈
ℕ |
49 | 37, 8 | deccl 12381 |
. . 3
⊢ ;23 ∈
ℕ0 |
50 | | 2nn 11976 |
. . 3
⊢ 2 ∈
ℕ |
51 | | eqid 2738 |
. . . 4
⊢ ;23 = ;23 |
52 | 37 | dec0h 12388 |
. . . 4
⊢ 2 = ;02 |
53 | | 7nn0 12185 |
. . . 4
⊢ 7 ∈
ℕ0 |
54 | 17 | addid2i 11093 |
. . . . . 6
⊢ (0 + 2) =
2 |
55 | 54 | oveq2i 7266 |
. . . . 5
⊢ ((7
· 2) + (0 + 2)) = ((7 · 2) + 2) |
56 | | 7t2e14 12475 |
. . . . . 6
⊢ (7
· 2) = ;14 |
57 | | 4p2e6 12056 |
. . . . . 6
⊢ (4 + 2) =
6 |
58 | 1, 7, 37, 56, 57 | decaddi 12426 |
. . . . 5
⊢ ((7
· 2) + 2) = ;16 |
59 | 55, 58 | eqtri 2766 |
. . . 4
⊢ ((7
· 2) + (0 + 2)) = ;16 |
60 | | 7t3e21 12476 |
. . . . 5
⊢ (7
· 3) = ;21 |
61 | | 1p2e3 12046 |
. . . . 5
⊢ (1 + 2) =
3 |
62 | 37, 1, 37, 60, 61 | decaddi 12426 |
. . . 4
⊢ ((7
· 3) + 2) = ;23 |
63 | 37, 8, 24, 37, 51, 52, 53, 8, 37, 59, 62 | decma2c 12419 |
. . 3
⊢ ((7
· ;23) + 2) = ;;163 |
64 | | 2lt7 12093 |
. . 3
⊢ 2 <
7 |
65 | 48, 49, 50, 63, 64 | ndvdsi 16049 |
. 2
⊢ ¬ 7
∥ ;;163 |
66 | 1, 23 | decnncl 12386 |
. . 3
⊢ ;11 ∈ ℕ |
67 | 1, 7 | deccl 12381 |
. . 3
⊢ ;14 ∈
ℕ0 |
68 | | 9nn 12001 |
. . 3
⊢ 9 ∈
ℕ |
69 | | 9nn0 12187 |
. . . 4
⊢ 9 ∈
ℕ0 |
70 | | eqid 2738 |
. . . 4
⊢ ;14 = ;14 |
71 | 69 | dec0h 12388 |
. . . 4
⊢ 9 = ;09 |
72 | 1, 1 | deccl 12381 |
. . . 4
⊢ ;11 ∈
ℕ0 |
73 | 31 | addid2i 11093 |
. . . . . 6
⊢ (0 + 5) =
5 |
74 | 73 | oveq2i 7266 |
. . . . 5
⊢ ((;11 · 1) + (0 + 5)) = ((;11 · 1) + 5) |
75 | 66 | nncni 11913 |
. . . . . . 7
⊢ ;11 ∈ ℂ |
76 | 75 | mulid1i 10910 |
. . . . . 6
⊢ (;11 · 1) = ;11 |
77 | 31, 27, 30 | addcomli 11097 |
. . . . . 6
⊢ (1 + 5) =
6 |
78 | 1, 1, 21, 76, 77 | decaddi 12426 |
. . . . 5
⊢ ((;11 · 1) + 5) = ;16 |
79 | 74, 78 | eqtri 2766 |
. . . 4
⊢ ((;11 · 1) + (0 + 5)) = ;16 |
80 | | eqid 2738 |
. . . . 5
⊢ ;11 = ;11 |
81 | 39 | mulid2i 10911 |
. . . . . . 7
⊢ (1
· 4) = 4 |
82 | 81, 28 | oveq12i 7267 |
. . . . . 6
⊢ ((1
· 4) + (0 + 1)) = (4 + 1) |
83 | | 4p1e5 12049 |
. . . . . 6
⊢ (4 + 1) =
5 |
84 | 82, 83 | eqtri 2766 |
. . . . 5
⊢ ((1
· 4) + (0 + 1)) = 5 |
85 | 81 | oveq1i 7265 |
. . . . . 6
⊢ ((1
· 4) + 9) = (4 + 9) |
86 | | 9cn 12003 |
. . . . . . 7
⊢ 9 ∈
ℂ |
87 | | 9p4e13 12455 |
. . . . . . 7
⊢ (9 + 4) =
;13 |
88 | 86, 39, 87 | addcomli 11097 |
. . . . . 6
⊢ (4 + 9) =
;13 |
89 | 85, 88 | eqtri 2766 |
. . . . 5
⊢ ((1
· 4) + 9) = ;13 |
90 | 1, 1, 24, 69, 80, 71, 7, 8, 1,
84, 89 | decmac 12418 |
. . . 4
⊢ ((;11 · 4) + 9) = ;53 |
91 | 1, 7, 24, 69, 70, 71, 72, 8, 21, 79, 90 | decma2c 12419 |
. . 3
⊢ ((;11 · ;14) + 9) = ;;163 |
92 | | 9lt10 12497 |
. . . 4
⊢ 9 <
;10 |
93 | 23, 1, 69, 92 | declti 12404 |
. . 3
⊢ 9 <
;11 |
94 | 66, 67, 68, 91, 93 | ndvdsi 16049 |
. 2
⊢ ¬
;11 ∥ ;;163 |
95 | 1, 4 | decnncl 12386 |
. . 3
⊢ ;13 ∈ ℕ |
96 | 1, 37 | deccl 12381 |
. . 3
⊢ ;12 ∈
ℕ0 |
97 | | eqid 2738 |
. . . 4
⊢ ;12 = ;12 |
98 | 53 | dec0h 12388 |
. . . 4
⊢ 7 = ;07 |
99 | 1, 8 | deccl 12381 |
. . . 4
⊢ ;13 ∈
ℕ0 |
100 | | eqid 2738 |
. . . . 5
⊢ ;13 = ;13 |
101 | 32 | addid2i 11093 |
. . . . . 6
⊢ (0 + 3) =
3 |
102 | 8 | dec0h 12388 |
. . . . . 6
⊢ 3 = ;03 |
103 | 101, 102 | eqtri 2766 |
. . . . 5
⊢ (0 + 3) =
;03 |
104 | 27 | mulid1i 10910 |
. . . . . . 7
⊢ (1
· 1) = 1 |
105 | | 00id 11080 |
. . . . . . 7
⊢ (0 + 0) =
0 |
106 | 104, 105 | oveq12i 7267 |
. . . . . 6
⊢ ((1
· 1) + (0 + 0)) = (1 + 0) |
107 | 27 | addid1i 11092 |
. . . . . 6
⊢ (1 + 0) =
1 |
108 | 106, 107 | eqtri 2766 |
. . . . 5
⊢ ((1
· 1) + (0 + 0)) = 1 |
109 | 32 | mulid1i 10910 |
. . . . . . . 8
⊢ (3
· 1) = 3 |
110 | 109 | oveq1i 7265 |
. . . . . . 7
⊢ ((3
· 1) + 3) = (3 + 3) |
111 | | 3p3e6 12055 |
. . . . . . 7
⊢ (3 + 3) =
6 |
112 | 110, 111 | eqtri 2766 |
. . . . . 6
⊢ ((3
· 1) + 3) = 6 |
113 | 2 | dec0h 12388 |
. . . . . 6
⊢ 6 = ;06 |
114 | 112, 113 | eqtri 2766 |
. . . . 5
⊢ ((3
· 1) + 3) = ;06 |
115 | 1, 8, 24, 8, 100, 103, 1, 2, 24, 108, 114 | decmac 12418 |
. . . 4
⊢ ((;13 · 1) + (0 + 3)) = ;16 |
116 | 18, 28 | oveq12i 7267 |
. . . . . 6
⊢ ((1
· 2) + (0 + 1)) = (2 + 1) |
117 | 116, 38 | eqtri 2766 |
. . . . 5
⊢ ((1
· 2) + (0 + 1)) = 3 |
118 | | 3t2e6 12069 |
. . . . . . 7
⊢ (3
· 2) = 6 |
119 | 118 | oveq1i 7265 |
. . . . . 6
⊢ ((3
· 2) + 7) = (6 + 7) |
120 | | 7cn 11997 |
. . . . . . 7
⊢ 7 ∈
ℂ |
121 | | 6cn 11994 |
. . . . . . 7
⊢ 6 ∈
ℂ |
122 | | 7p6e13 12444 |
. . . . . . 7
⊢ (7 + 6) =
;13 |
123 | 120, 121,
122 | addcomli 11097 |
. . . . . 6
⊢ (6 + 7) =
;13 |
124 | 119, 123 | eqtri 2766 |
. . . . 5
⊢ ((3
· 2) + 7) = ;13 |
125 | 1, 8, 24, 53, 100, 98, 37, 8, 1, 117, 124 | decmac 12418 |
. . . 4
⊢ ((;13 · 2) + 7) = ;33 |
126 | 1, 37, 24, 53, 97, 98, 99, 8, 8, 115, 125 | decma2c 12419 |
. . 3
⊢ ((;13 · ;12) + 7) = ;;163 |
127 | | 7lt10 12499 |
. . . 4
⊢ 7 <
;10 |
128 | 23, 8, 53, 127 | declti 12404 |
. . 3
⊢ 7 <
;13 |
129 | 95, 96, 48, 126, 128 | ndvdsi 16049 |
. 2
⊢ ¬
;13 ∥ ;;163 |
130 | 1, 48 | decnncl 12386 |
. . 3
⊢ ;17 ∈ ℕ |
131 | | 10nn 12382 |
. . 3
⊢ ;10 ∈ ℕ |
132 | | eqid 2738 |
. . . 4
⊢ ;17 = ;17 |
133 | | eqid 2738 |
. . . 4
⊢ ;10 = ;10 |
134 | 86 | mulid2i 10911 |
. . . . . 6
⊢ (1
· 9) = 9 |
135 | | 6p1e7 12051 |
. . . . . . 7
⊢ (6 + 1) =
7 |
136 | 121, 27, 135 | addcomli 11097 |
. . . . . 6
⊢ (1 + 6) =
7 |
137 | 134, 136 | oveq12i 7267 |
. . . . 5
⊢ ((1
· 9) + (1 + 6)) = (9 + 7) |
138 | | 9p7e16 12458 |
. . . . 5
⊢ (9 + 7) =
;16 |
139 | 137, 138 | eqtri 2766 |
. . . 4
⊢ ((1
· 9) + (1 + 6)) = ;16 |
140 | | 9t7e63 12493 |
. . . . . . 7
⊢ (9
· 7) = ;63 |
141 | 86, 120, 140 | mulcomli 10915 |
. . . . . 6
⊢ (7
· 9) = ;63 |
142 | 141 | oveq1i 7265 |
. . . . 5
⊢ ((7
· 9) + 0) = (;63 +
0) |
143 | 2, 8 | deccl 12381 |
. . . . . . 7
⊢ ;63 ∈
ℕ0 |
144 | 143 | nn0cni 12175 |
. . . . . 6
⊢ ;63 ∈ ℂ |
145 | 144 | addid1i 11092 |
. . . . 5
⊢ (;63 + 0) = ;63 |
146 | 142, 145 | eqtri 2766 |
. . . 4
⊢ ((7
· 9) + 0) = ;63 |
147 | 1, 53, 1, 24, 132, 133, 69, 8, 2, 139, 146 | decmac 12418 |
. . 3
⊢ ((;17 · 9) + ;10) = ;;163 |
148 | | 7pos 12014 |
. . . 4
⊢ 0 <
7 |
149 | 1, 24, 48, 148 | declt 12394 |
. . 3
⊢ ;10 < ;17 |
150 | 130, 69, 131, 147, 149 | ndvdsi 16049 |
. 2
⊢ ¬
;17 ∥ ;;163 |
151 | 1, 68 | decnncl 12386 |
. . 3
⊢ ;19 ∈ ℕ |
152 | | eqid 2738 |
. . . 4
⊢ ;19 = ;19 |
153 | | 8cn 12000 |
. . . . . . 7
⊢ 8 ∈
ℂ |
154 | 153 | mulid2i 10911 |
. . . . . 6
⊢ (1
· 8) = 8 |
155 | | 7p1e8 12052 |
. . . . . . 7
⊢ (7 + 1) =
8 |
156 | 120, 27, 155 | addcomli 11097 |
. . . . . 6
⊢ (1 + 7) =
8 |
157 | 154, 156 | oveq12i 7267 |
. . . . 5
⊢ ((1
· 8) + (1 + 7)) = (8 + 8) |
158 | | 8p8e16 12452 |
. . . . 5
⊢ (8 + 8) =
;16 |
159 | 157, 158 | eqtri 2766 |
. . . 4
⊢ ((1
· 8) + (1 + 7)) = ;16 |
160 | | 9t8e72 12494 |
. . . . 5
⊢ (9
· 8) = ;72 |
161 | 53, 37, 38, 160 | decsuc 12397 |
. . . 4
⊢ ((9
· 8) + 1) = ;73 |
162 | 1, 69, 1, 1, 152, 80, 6, 8, 53, 159, 161 | decmac 12418 |
. . 3
⊢ ((;19 · 8) + ;11) = ;;163 |
163 | | 1lt9 12109 |
. . . 4
⊢ 1 <
9 |
164 | 1, 1, 68, 163 | declt 12394 |
. . 3
⊢ ;11 < ;19 |
165 | 151, 6, 66, 162, 164 | ndvdsi 16049 |
. 2
⊢ ¬
;19 ∥ ;;163 |
166 | 37, 4 | decnncl 12386 |
. . 3
⊢ ;23 ∈ ℕ |
167 | 120, 17, 56 | mulcomli 10915 |
. . . . 5
⊢ (2
· 7) = ;14 |
168 | 1, 7, 37, 167, 57 | decaddi 12426 |
. . . 4
⊢ ((2
· 7) + 2) = ;16 |
169 | 120, 32, 60 | mulcomli 10915 |
. . . . 5
⊢ (3
· 7) = ;21 |
170 | 37, 1, 37, 169, 61 | decaddi 12426 |
. . . 4
⊢ ((3
· 7) + 2) = ;23 |
171 | 37, 8, 37, 51, 53, 8, 37, 168, 170 | decrmac 12424 |
. . 3
⊢ ((;23 · 7) + 2) = ;;163 |
172 | | 2lt10 12504 |
. . . 4
⊢ 2 <
;10 |
173 | 50, 8, 37, 172 | declti 12404 |
. . 3
⊢ 2 <
;23 |
174 | 166, 53, 50, 171, 173 | ndvdsi 16049 |
. 2
⊢ ¬
;23 ∥ ;;163 |
175 | 5, 12, 16, 20, 45, 47, 65, 94, 129, 150, 165, 174 | prmlem2 16749 |
1
⊢ ;;163 ∈ ℙ |