Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primesle9 Structured version   Visualization version   GIF version

Theorem nnsum3primesle9 47668
Description: Every integer greater than 1 and less than or equal to 8 is the sum of at most 3 primes. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
nnsum3primesle9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑁,𝑑,𝑓,𝑘

Proof of Theorem nnsum3primesle9
StepHypRef Expression
1 eluzelre 12914 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
2 8re 12389 . . . . . 6 8 ∈ ℝ
32a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘2) → 8 ∈ ℝ)
41, 3leloed 11433 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 8 ↔ (𝑁 < 8 ∨ 𝑁 = 8)))
5 eluzelz 12913 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
6 7nn 12385 . . . . . . . . . 10 7 ∈ ℕ
76nnzi 12667 . . . . . . . . 9 7 ∈ ℤ
8 zleltp1 12694 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 7 ∈ ℤ) → (𝑁 ≤ 7 ↔ 𝑁 < (7 + 1)))
95, 7, 8sylancl 585 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 7 ↔ 𝑁 < (7 + 1)))
10 7re 12386 . . . . . . . . . 10 7 ∈ ℝ
1110a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 7 ∈ ℝ)
121, 11leloed 11433 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 7 ↔ (𝑁 < 7 ∨ 𝑁 = 7)))
13 7p1e8 12442 . . . . . . . . . 10 (7 + 1) = 8
1413breq2i 5174 . . . . . . . . 9 (𝑁 < (7 + 1) ↔ 𝑁 < 8)
1514a1i 11 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 < (7 + 1) ↔ 𝑁 < 8))
169, 12, 153bitr3rd 310 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 < 8 ↔ (𝑁 < 7 ∨ 𝑁 = 7)))
17 6nn 12382 . . . . . . . . . . . 12 6 ∈ ℕ
1817nnzi 12667 . . . . . . . . . . 11 6 ∈ ℤ
19 zleltp1 12694 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 6 ∈ ℤ) → (𝑁 ≤ 6 ↔ 𝑁 < (6 + 1)))
205, 18, 19sylancl 585 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 6 ↔ 𝑁 < (6 + 1)))
21 6re 12383 . . . . . . . . . . . 12 6 ∈ ℝ
2221a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 6 ∈ ℝ)
231, 22leloed 11433 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 6 ↔ (𝑁 < 6 ∨ 𝑁 = 6)))
24 6p1e7 12441 . . . . . . . . . . . 12 (6 + 1) = 7
2524breq2i 5174 . . . . . . . . . . 11 (𝑁 < (6 + 1) ↔ 𝑁 < 7)
2625a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 < (6 + 1) ↔ 𝑁 < 7))
2720, 23, 263bitr3rd 310 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 < 7 ↔ (𝑁 < 6 ∨ 𝑁 = 6)))
28 5nn 12379 . . . . . . . . . . . . . 14 5 ∈ ℕ
2928nnzi 12667 . . . . . . . . . . . . 13 5 ∈ ℤ
30 zleltp1 12694 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 5 ∈ ℤ) → (𝑁 ≤ 5 ↔ 𝑁 < (5 + 1)))
315, 29, 30sylancl 585 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 5 ↔ 𝑁 < (5 + 1)))
32 5re 12380 . . . . . . . . . . . . . 14 5 ∈ ℝ
3332a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → 5 ∈ ℝ)
341, 33leloed 11433 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 5 ↔ (𝑁 < 5 ∨ 𝑁 = 5)))
35 5p1e6 12440 . . . . . . . . . . . . . 14 (5 + 1) = 6
3635breq2i 5174 . . . . . . . . . . . . 13 (𝑁 < (5 + 1) ↔ 𝑁 < 6)
3736a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 < (5 + 1) ↔ 𝑁 < 6))
3831, 34, 373bitr3rd 310 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 < 6 ↔ (𝑁 < 5 ∨ 𝑁 = 5)))
39 4z 12677 . . . . . . . . . . . . . . 15 4 ∈ ℤ
40 zleltp1 12694 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 4 ∈ ℤ) → (𝑁 ≤ 4 ↔ 𝑁 < (4 + 1)))
415, 39, 40sylancl 585 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 4 ↔ 𝑁 < (4 + 1)))
42 4re 12377 . . . . . . . . . . . . . . . 16 4 ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 4 ∈ ℝ)
441, 43leloed 11433 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 4 ↔ (𝑁 < 4 ∨ 𝑁 = 4)))
45 4p1e5 12439 . . . . . . . . . . . . . . . 16 (4 + 1) = 5
4645breq2i 5174 . . . . . . . . . . . . . . 15 (𝑁 < (4 + 1) ↔ 𝑁 < 5)
4746a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 < (4 + 1) ↔ 𝑁 < 5))
4841, 44, 473bitr3rd 310 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (𝑁 < 5 ↔ (𝑁 < 4 ∨ 𝑁 = 4)))
49 3z 12676 . . . . . . . . . . . . . . . . 17 3 ∈ ℤ
50 zleltp1 12694 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ∈ ℤ) → (𝑁 ≤ 3 ↔ 𝑁 < (3 + 1)))
515, 49, 50sylancl 585 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 3 ↔ 𝑁 < (3 + 1)))
52 3re 12373 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
5352a1i 11 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 3 ∈ ℝ)
541, 53leloed 11433 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 3 ↔ (𝑁 < 3 ∨ 𝑁 = 3)))
55 3p1e4 12438 . . . . . . . . . . . . . . . . . 18 (3 + 1) = 4
5655breq2i 5174 . . . . . . . . . . . . . . . . 17 (𝑁 < (3 + 1) ↔ 𝑁 < 4)
5756a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 < (3 + 1) ↔ 𝑁 < 4))
5851, 54, 573bitr3rd 310 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (𝑁 < 4 ↔ (𝑁 < 3 ∨ 𝑁 = 3)))
59 eluz2 12909 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
60 2re 12367 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
6160a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → 2 ∈ ℝ)
62 zre 12643 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6361, 62leloed 11433 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
64 3m1e2 12421 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (3 − 1) = 2
6564eqcomi 2749 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 = (3 − 1)
6665breq1i 5173 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 < 𝑁 ↔ (3 − 1) < 𝑁)
67 zlem1lt 12695 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (3 ≤ 𝑁 ↔ (3 − 1) < 𝑁))
6849, 67mpan 689 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → (3 ≤ 𝑁 ↔ (3 − 1) < 𝑁))
6968biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℤ → ((3 − 1) < 𝑁 → 3 ≤ 𝑁))
7066, 69biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → (2 < 𝑁 → 3 ≤ 𝑁))
7152a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → 3 ∈ ℝ)
7271, 62lenltd 11436 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℤ → (3 ≤ 𝑁 ↔ ¬ 𝑁 < 3))
73 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑁 < 3 → (𝑁 < 3 → 𝑁 = 2))
7472, 73biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → (3 ≤ 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
7570, 74syldc 48 . . . . . . . . . . . . . . . . . . . . . . 23 (2 < 𝑁 → (𝑁 ∈ ℤ → (𝑁 < 3 → 𝑁 = 2)))
76 eqcom 2747 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 = 𝑁𝑁 = 2)
7776biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 = 𝑁𝑁 = 2)
78772a1d 26 . . . . . . . . . . . . . . . . . . . . . . 23 (2 = 𝑁 → (𝑁 ∈ ℤ → (𝑁 < 3 → 𝑁 = 2)))
7975, 78jaoi 856 . . . . . . . . . . . . . . . . . . . . . 22 ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 ∈ ℤ → (𝑁 < 3 → 𝑁 = 2)))
8079com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 < 3 → 𝑁 = 2)))
8163, 80sylbid 240 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
8281imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 → 𝑁 = 2))
83 2lt3 12465 . . . . . . . . . . . . . . . . . . . 20 2 < 3
84 breq1 5169 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = 2 → (𝑁 < 3 ↔ 2 < 3))
8583, 84mpbiri 258 . . . . . . . . . . . . . . . . . . 19 (𝑁 = 2 → 𝑁 < 3)
8682, 85impbid1 225 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 ↔ 𝑁 = 2))
87863adant1 1130 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 ↔ 𝑁 = 2))
8859, 87sylbi 217 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 < 3 ↔ 𝑁 = 2))
8988orbi1d 915 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 3 ∨ 𝑁 = 3) ↔ (𝑁 = 2 ∨ 𝑁 = 3)))
9058, 89bitrd 279 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 < 4 ↔ (𝑁 = 2 ∨ 𝑁 = 3)))
9190orbi1d 915 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 4 ∨ 𝑁 = 4) ↔ ((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4)))
9248, 91bitrd 279 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 < 5 ↔ ((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4)))
9392orbi1d 915 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 5 ∨ 𝑁 = 5) ↔ (((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5)))
9438, 93bitrd 279 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 < 6 ↔ (((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5)))
9594orbi1d 915 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 6 ∨ 𝑁 = 6) ↔ ((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6)))
9627, 95bitrd 279 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 < 7 ↔ ((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6)))
9796orbi1d 915 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 7 ∨ 𝑁 = 7) ↔ (((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7)))
9816, 97bitrd 279 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑁 < 8 ↔ (((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7)))
9998orbi1d 915 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 8 ∨ 𝑁 = 8) ↔ ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8)))
10099biimpd 229 . . . 4 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 8 ∨ 𝑁 = 8) → ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8)))
1014, 100sylbid 240 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 8 → ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8)))
102101imp 406 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ≤ 8) → ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8))
103 2prm 16739 . . . . . . . . . 10 2 ∈ ℙ
104 eleq1 2832 . . . . . . . . . 10 (𝑁 = 2 → (𝑁 ∈ ℙ ↔ 2 ∈ ℙ))
105103, 104mpbiri 258 . . . . . . . . 9 (𝑁 = 2 → 𝑁 ∈ ℙ)
106 nnsum3primesprm 47664 . . . . . . . . 9 (𝑁 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
107105, 106syl 17 . . . . . . . 8 (𝑁 = 2 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
108 3prm 16741 . . . . . . . . . 10 3 ∈ ℙ
109 eleq1 2832 . . . . . . . . . 10 (𝑁 = 3 → (𝑁 ∈ ℙ ↔ 3 ∈ ℙ))
110108, 109mpbiri 258 . . . . . . . . 9 (𝑁 = 3 → 𝑁 ∈ ℙ)
111110, 106syl 17 . . . . . . . 8 (𝑁 = 3 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
112107, 111jaoi 856 . . . . . . 7 ((𝑁 = 2 ∨ 𝑁 = 3) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
113 nnsum3primes4 47662 . . . . . . . 8 𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))
114 eqeq1 2744 . . . . . . . . . 10 (𝑁 = 4 → (𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
115114anbi2d 629 . . . . . . . . 9 (𝑁 = 4 → ((𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
1161152rexbidv 3228 . . . . . . . 8 (𝑁 = 4 → (∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
117113, 116mpbiri 258 . . . . . . 7 (𝑁 = 4 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
118112, 117jaoi 856 . . . . . 6 (((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
119 5prm 17156 . . . . . . . 8 5 ∈ ℙ
120 eleq1 2832 . . . . . . . 8 (𝑁 = 5 → (𝑁 ∈ ℙ ↔ 5 ∈ ℙ))
121119, 120mpbiri 258 . . . . . . 7 (𝑁 = 5 → 𝑁 ∈ ℙ)
122121, 106syl 17 . . . . . 6 (𝑁 = 5 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
123118, 122jaoi 856 . . . . 5 ((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
124 6gbe 47645 . . . . . . 7 6 ∈ GoldbachEven
125 eleq1 2832 . . . . . . 7 (𝑁 = 6 → (𝑁 ∈ GoldbachEven ↔ 6 ∈ GoldbachEven ))
126124, 125mpbiri 258 . . . . . 6 (𝑁 = 6 → 𝑁 ∈ GoldbachEven )
127 nnsum3primesgbe 47666 . . . . . 6 (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
128126, 127syl 17 . . . . 5 (𝑁 = 6 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
129123, 128jaoi 856 . . . 4 (((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
130 7prm 17158 . . . . . 6 7 ∈ ℙ
131 eleq1 2832 . . . . . 6 (𝑁 = 7 → (𝑁 ∈ ℙ ↔ 7 ∈ ℙ))
132130, 131mpbiri 258 . . . . 5 (𝑁 = 7 → 𝑁 ∈ ℙ)
133132, 106syl 17 . . . 4 (𝑁 = 7 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
134129, 133jaoi 856 . . 3 ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
135 8gbe 47647 . . . . 5 8 ∈ GoldbachEven
136 eleq1 2832 . . . . 5 (𝑁 = 8 → (𝑁 ∈ GoldbachEven ↔ 8 ∈ GoldbachEven ))
137135, 136mpbiri 258 . . . 4 (𝑁 = 8 → 𝑁 ∈ GoldbachEven )
138137, 127syl 17 . . 3 (𝑁 = 8 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
139134, 138jaoi 856 . 2 (((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
140102, 139syl 17 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  m cmap 8884  cr 11183  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cn 12293  2c2 12348  3c3 12349  4c4 12350  5c5 12351  6c6 12352  7c7 12353  8c8 12354  cz 12639  cuz 12903  ...cfz 13567  Σcsu 15734  cprime 16718   GoldbachEven cgbe 47619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-prm 16719  df-even 47500  df-odd 47501  df-gbe 47622
This theorem is referenced by:  nnsum4primesle9  47669  bgoldbnnsum3prm  47678
  Copyright terms: Public domain W3C validator