Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primesle9 Structured version   Visualization version   GIF version

Theorem nnsum3primesle9 42460
Description: Every integer greater than 1 and less than or equal to 8 is the sum of at most 3 primes. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
nnsum3primesle9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑁,𝑑,𝑓,𝑘

Proof of Theorem nnsum3primesle9
StepHypRef Expression
1 eluzelre 11941 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
2 8re 11414 . . . . . 6 8 ∈ ℝ
32a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘2) → 8 ∈ ℝ)
41, 3leloed 10470 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 8 ↔ (𝑁 < 8 ∨ 𝑁 = 8)))
5 eluzelz 11940 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
6 7nn 11409 . . . . . . . . . 10 7 ∈ ℕ
76nnzi 11691 . . . . . . . . 9 7 ∈ ℤ
8 zleltp1 11718 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 7 ∈ ℤ) → (𝑁 ≤ 7 ↔ 𝑁 < (7 + 1)))
95, 7, 8sylancl 581 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 7 ↔ 𝑁 < (7 + 1)))
10 7re 11410 . . . . . . . . . 10 7 ∈ ℝ
1110a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 7 ∈ ℝ)
121, 11leloed 10470 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 7 ↔ (𝑁 < 7 ∨ 𝑁 = 7)))
13 7p1e8 11469 . . . . . . . . . 10 (7 + 1) = 8
1413breq2i 4851 . . . . . . . . 9 (𝑁 < (7 + 1) ↔ 𝑁 < 8)
1514a1i 11 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 < (7 + 1) ↔ 𝑁 < 8))
169, 12, 153bitr3rd 302 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 < 8 ↔ (𝑁 < 7 ∨ 𝑁 = 7)))
17 6nn 11405 . . . . . . . . . . . 12 6 ∈ ℕ
1817nnzi 11691 . . . . . . . . . . 11 6 ∈ ℤ
19 zleltp1 11718 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 6 ∈ ℤ) → (𝑁 ≤ 6 ↔ 𝑁 < (6 + 1)))
205, 18, 19sylancl 581 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 6 ↔ 𝑁 < (6 + 1)))
21 6re 11406 . . . . . . . . . . . 12 6 ∈ ℝ
2221a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 6 ∈ ℝ)
231, 22leloed 10470 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 6 ↔ (𝑁 < 6 ∨ 𝑁 = 6)))
24 6p1e7 11468 . . . . . . . . . . . 12 (6 + 1) = 7
2524breq2i 4851 . . . . . . . . . . 11 (𝑁 < (6 + 1) ↔ 𝑁 < 7)
2625a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 < (6 + 1) ↔ 𝑁 < 7))
2720, 23, 263bitr3rd 302 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 < 7 ↔ (𝑁 < 6 ∨ 𝑁 = 6)))
28 5nn 11401 . . . . . . . . . . . . . 14 5 ∈ ℕ
2928nnzi 11691 . . . . . . . . . . . . 13 5 ∈ ℤ
30 zleltp1 11718 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 5 ∈ ℤ) → (𝑁 ≤ 5 ↔ 𝑁 < (5 + 1)))
315, 29, 30sylancl 581 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 5 ↔ 𝑁 < (5 + 1)))
32 5re 11402 . . . . . . . . . . . . . 14 5 ∈ ℝ
3332a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → 5 ∈ ℝ)
341, 33leloed 10470 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 5 ↔ (𝑁 < 5 ∨ 𝑁 = 5)))
35 5p1e6 11467 . . . . . . . . . . . . . 14 (5 + 1) = 6
3635breq2i 4851 . . . . . . . . . . . . 13 (𝑁 < (5 + 1) ↔ 𝑁 < 6)
3736a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 < (5 + 1) ↔ 𝑁 < 6))
3831, 34, 373bitr3rd 302 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 < 6 ↔ (𝑁 < 5 ∨ 𝑁 = 5)))
39 4z 11701 . . . . . . . . . . . . . . 15 4 ∈ ℤ
40 zleltp1 11718 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 4 ∈ ℤ) → (𝑁 ≤ 4 ↔ 𝑁 < (4 + 1)))
415, 39, 40sylancl 581 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 4 ↔ 𝑁 < (4 + 1)))
42 4re 11398 . . . . . . . . . . . . . . . 16 4 ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 4 ∈ ℝ)
441, 43leloed 10470 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 4 ↔ (𝑁 < 4 ∨ 𝑁 = 4)))
45 4p1e5 11466 . . . . . . . . . . . . . . . 16 (4 + 1) = 5
4645breq2i 4851 . . . . . . . . . . . . . . 15 (𝑁 < (4 + 1) ↔ 𝑁 < 5)
4746a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 < (4 + 1) ↔ 𝑁 < 5))
4841, 44, 473bitr3rd 302 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (𝑁 < 5 ↔ (𝑁 < 4 ∨ 𝑁 = 4)))
49 3z 11700 . . . . . . . . . . . . . . . . 17 3 ∈ ℤ
50 zleltp1 11718 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ∈ ℤ) → (𝑁 ≤ 3 ↔ 𝑁 < (3 + 1)))
515, 49, 50sylancl 581 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 3 ↔ 𝑁 < (3 + 1)))
52 3re 11393 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
5352a1i 11 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 3 ∈ ℝ)
541, 53leloed 10470 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 3 ↔ (𝑁 < 3 ∨ 𝑁 = 3)))
55 3p1e4 11465 . . . . . . . . . . . . . . . . . 18 (3 + 1) = 4
5655breq2i 4851 . . . . . . . . . . . . . . . . 17 (𝑁 < (3 + 1) ↔ 𝑁 < 4)
5756a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 < (3 + 1) ↔ 𝑁 < 4))
5851, 54, 573bitr3rd 302 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (𝑁 < 4 ↔ (𝑁 < 3 ∨ 𝑁 = 3)))
59 eluz2 11936 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
60 2re 11387 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
6160a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → 2 ∈ ℝ)
62 zre 11670 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6361, 62leloed 10470 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
64 3m1e2 11448 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (3 − 1) = 2
6564eqcomi 2808 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 = (3 − 1)
6665breq1i 4850 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 < 𝑁 ↔ (3 − 1) < 𝑁)
67 zlem1lt 11719 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (3 ≤ 𝑁 ↔ (3 − 1) < 𝑁))
6849, 67mpan 682 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → (3 ≤ 𝑁 ↔ (3 − 1) < 𝑁))
6968biimprd 240 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℤ → ((3 − 1) < 𝑁 → 3 ≤ 𝑁))
7066, 69syl5bi 234 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → (2 < 𝑁 → 3 ≤ 𝑁))
7152a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → 3 ∈ ℝ)
7271, 62lenltd 10473 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℤ → (3 ≤ 𝑁 ↔ ¬ 𝑁 < 3))
73 pm2.21 121 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑁 < 3 → (𝑁 < 3 → 𝑁 = 2))
7472, 73syl6bi 245 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → (3 ≤ 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
7570, 74syldc 48 . . . . . . . . . . . . . . . . . . . . . . 23 (2 < 𝑁 → (𝑁 ∈ ℤ → (𝑁 < 3 → 𝑁 = 2)))
76 eqcom 2806 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 = 𝑁𝑁 = 2)
7776biimpi 208 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 = 𝑁𝑁 = 2)
78772a1d 26 . . . . . . . . . . . . . . . . . . . . . . 23 (2 = 𝑁 → (𝑁 ∈ ℤ → (𝑁 < 3 → 𝑁 = 2)))
7975, 78jaoi 884 . . . . . . . . . . . . . . . . . . . . . 22 ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 ∈ ℤ → (𝑁 < 3 → 𝑁 = 2)))
8079com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 < 3 → 𝑁 = 2)))
8163, 80sylbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
8281imp 396 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 → 𝑁 = 2))
83 2lt3 11492 . . . . . . . . . . . . . . . . . . . 20 2 < 3
84 breq1 4846 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = 2 → (𝑁 < 3 ↔ 2 < 3))
8583, 84mpbiri 250 . . . . . . . . . . . . . . . . . . 19 (𝑁 = 2 → 𝑁 < 3)
8682, 85impbid1 217 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 ↔ 𝑁 = 2))
87863adant1 1161 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 ↔ 𝑁 = 2))
8859, 87sylbi 209 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 < 3 ↔ 𝑁 = 2))
8988orbi1d 941 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 3 ∨ 𝑁 = 3) ↔ (𝑁 = 2 ∨ 𝑁 = 3)))
9058, 89bitrd 271 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 < 4 ↔ (𝑁 = 2 ∨ 𝑁 = 3)))
9190orbi1d 941 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 4 ∨ 𝑁 = 4) ↔ ((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4)))
9248, 91bitrd 271 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 < 5 ↔ ((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4)))
9392orbi1d 941 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 5 ∨ 𝑁 = 5) ↔ (((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5)))
9438, 93bitrd 271 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 < 6 ↔ (((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5)))
9594orbi1d 941 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 6 ∨ 𝑁 = 6) ↔ ((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6)))
9627, 95bitrd 271 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 < 7 ↔ ((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6)))
9796orbi1d 941 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 7 ∨ 𝑁 = 7) ↔ (((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7)))
9816, 97bitrd 271 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑁 < 8 ↔ (((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7)))
9998orbi1d 941 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 8 ∨ 𝑁 = 8) ↔ ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8)))
10099biimpd 221 . . . 4 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 8 ∨ 𝑁 = 8) → ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8)))
1014, 100sylbid 232 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 8 → ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8)))
102101imp 396 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ≤ 8) → ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8))
103 2prm 15739 . . . . . . . . . 10 2 ∈ ℙ
104 eleq1 2866 . . . . . . . . . 10 (𝑁 = 2 → (𝑁 ∈ ℙ ↔ 2 ∈ ℙ))
105103, 104mpbiri 250 . . . . . . . . 9 (𝑁 = 2 → 𝑁 ∈ ℙ)
106 nnsum3primesprm 42456 . . . . . . . . 9 (𝑁 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
107105, 106syl 17 . . . . . . . 8 (𝑁 = 2 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
108 3prm 15740 . . . . . . . . . 10 3 ∈ ℙ
109 eleq1 2866 . . . . . . . . . 10 (𝑁 = 3 → (𝑁 ∈ ℙ ↔ 3 ∈ ℙ))
110108, 109mpbiri 250 . . . . . . . . 9 (𝑁 = 3 → 𝑁 ∈ ℙ)
111110, 106syl 17 . . . . . . . 8 (𝑁 = 3 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
112107, 111jaoi 884 . . . . . . 7 ((𝑁 = 2 ∨ 𝑁 = 3) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
113 nnsum3primes4 42454 . . . . . . . 8 𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))
114 eqeq1 2803 . . . . . . . . . 10 (𝑁 = 4 → (𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
115114anbi2d 623 . . . . . . . . 9 (𝑁 = 4 → ((𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
1161152rexbidv 3238 . . . . . . . 8 (𝑁 = 4 → (∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
117113, 116mpbiri 250 . . . . . . 7 (𝑁 = 4 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
118112, 117jaoi 884 . . . . . 6 (((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
119 5prm 16143 . . . . . . . 8 5 ∈ ℙ
120 eleq1 2866 . . . . . . . 8 (𝑁 = 5 → (𝑁 ∈ ℙ ↔ 5 ∈ ℙ))
121119, 120mpbiri 250 . . . . . . 7 (𝑁 = 5 → 𝑁 ∈ ℙ)
122121, 106syl 17 . . . . . 6 (𝑁 = 5 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
123118, 122jaoi 884 . . . . 5 ((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
124 6gbe 42437 . . . . . . 7 6 ∈ GoldbachEven
125 eleq1 2866 . . . . . . 7 (𝑁 = 6 → (𝑁 ∈ GoldbachEven ↔ 6 ∈ GoldbachEven ))
126124, 125mpbiri 250 . . . . . 6 (𝑁 = 6 → 𝑁 ∈ GoldbachEven )
127 nnsum3primesgbe 42458 . . . . . 6 (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
128126, 127syl 17 . . . . 5 (𝑁 = 6 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
129123, 128jaoi 884 . . . 4 (((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
130 7prm 16145 . . . . . 6 7 ∈ ℙ
131 eleq1 2866 . . . . . 6 (𝑁 = 7 → (𝑁 ∈ ℙ ↔ 7 ∈ ℙ))
132130, 131mpbiri 250 . . . . 5 (𝑁 = 7 → 𝑁 ∈ ℙ)
133132, 106syl 17 . . . 4 (𝑁 = 7 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
134129, 133jaoi 884 . . 3 ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
135 8gbe 42439 . . . . 5 8 ∈ GoldbachEven
136 eleq1 2866 . . . . 5 (𝑁 = 8 → (𝑁 ∈ GoldbachEven ↔ 8 ∈ GoldbachEven ))
137135, 136mpbiri 250 . . . 4 (𝑁 = 8 → 𝑁 ∈ GoldbachEven )
138137, 127syl 17 . . 3 (𝑁 = 8 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
139134, 138jaoi 884 . 2 (((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
140102, 139syl 17 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  wo 874  w3a 1108   = wceq 1653  wcel 2157  wrex 3090   class class class wbr 4843  cfv 6101  (class class class)co 6878  𝑚 cmap 8095  cr 10223  1c1 10225   + caddc 10227   < clt 10363  cle 10364  cmin 10556  cn 11312  2c2 11368  3c3 11369  4c4 11370  5c5 11371  6c6 11372  7c7 11373  8c8 11374  cz 11666  cuz 11930  ...cfz 12580  Σcsu 14757  cprime 15719   GoldbachEven cgbe 42411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-rp 12075  df-fz 12581  df-fzo 12721  df-seq 13056  df-exp 13115  df-hash 13371  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-clim 14560  df-sum 14758  df-dvds 15320  df-prm 15720  df-even 42317  df-odd 42318  df-gbe 42414
This theorem is referenced by:  nnsum4primesle9  42461  bgoldbnnsum3prm  42470
  Copyright terms: Public domain W3C validator