Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primesle9 Structured version   Visualization version   GIF version

Theorem nnsum3primesle9 47781
Description: Every integer greater than 1 and less than or equal to 8 is the sum of at most 3 primes. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
nnsum3primesle9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑁,𝑑,𝑓,𝑘

Proof of Theorem nnsum3primesle9
StepHypRef Expression
1 eluzelre 12889 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
2 8re 12362 . . . . . 6 8 ∈ ℝ
32a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘2) → 8 ∈ ℝ)
41, 3leloed 11404 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 8 ↔ (𝑁 < 8 ∨ 𝑁 = 8)))
5 eluzelz 12888 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
6 7nn 12358 . . . . . . . . . 10 7 ∈ ℕ
76nnzi 12641 . . . . . . . . 9 7 ∈ ℤ
8 zleltp1 12668 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 7 ∈ ℤ) → (𝑁 ≤ 7 ↔ 𝑁 < (7 + 1)))
95, 7, 8sylancl 586 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 7 ↔ 𝑁 < (7 + 1)))
10 7re 12359 . . . . . . . . . 10 7 ∈ ℝ
1110a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 7 ∈ ℝ)
121, 11leloed 11404 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 7 ↔ (𝑁 < 7 ∨ 𝑁 = 7)))
13 7p1e8 12415 . . . . . . . . . 10 (7 + 1) = 8
1413breq2i 5151 . . . . . . . . 9 (𝑁 < (7 + 1) ↔ 𝑁 < 8)
1514a1i 11 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 < (7 + 1) ↔ 𝑁 < 8))
169, 12, 153bitr3rd 310 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 < 8 ↔ (𝑁 < 7 ∨ 𝑁 = 7)))
17 6nn 12355 . . . . . . . . . . . 12 6 ∈ ℕ
1817nnzi 12641 . . . . . . . . . . 11 6 ∈ ℤ
19 zleltp1 12668 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 6 ∈ ℤ) → (𝑁 ≤ 6 ↔ 𝑁 < (6 + 1)))
205, 18, 19sylancl 586 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 6 ↔ 𝑁 < (6 + 1)))
21 6re 12356 . . . . . . . . . . . 12 6 ∈ ℝ
2221a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 6 ∈ ℝ)
231, 22leloed 11404 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 6 ↔ (𝑁 < 6 ∨ 𝑁 = 6)))
24 6p1e7 12414 . . . . . . . . . . . 12 (6 + 1) = 7
2524breq2i 5151 . . . . . . . . . . 11 (𝑁 < (6 + 1) ↔ 𝑁 < 7)
2625a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 < (6 + 1) ↔ 𝑁 < 7))
2720, 23, 263bitr3rd 310 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 < 7 ↔ (𝑁 < 6 ∨ 𝑁 = 6)))
28 5nn 12352 . . . . . . . . . . . . . 14 5 ∈ ℕ
2928nnzi 12641 . . . . . . . . . . . . 13 5 ∈ ℤ
30 zleltp1 12668 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 5 ∈ ℤ) → (𝑁 ≤ 5 ↔ 𝑁 < (5 + 1)))
315, 29, 30sylancl 586 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 5 ↔ 𝑁 < (5 + 1)))
32 5re 12353 . . . . . . . . . . . . . 14 5 ∈ ℝ
3332a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → 5 ∈ ℝ)
341, 33leloed 11404 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 5 ↔ (𝑁 < 5 ∨ 𝑁 = 5)))
35 5p1e6 12413 . . . . . . . . . . . . . 14 (5 + 1) = 6
3635breq2i 5151 . . . . . . . . . . . . 13 (𝑁 < (5 + 1) ↔ 𝑁 < 6)
3736a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 < (5 + 1) ↔ 𝑁 < 6))
3831, 34, 373bitr3rd 310 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 < 6 ↔ (𝑁 < 5 ∨ 𝑁 = 5)))
39 4z 12651 . . . . . . . . . . . . . . 15 4 ∈ ℤ
40 zleltp1 12668 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 4 ∈ ℤ) → (𝑁 ≤ 4 ↔ 𝑁 < (4 + 1)))
415, 39, 40sylancl 586 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 4 ↔ 𝑁 < (4 + 1)))
42 4re 12350 . . . . . . . . . . . . . . . 16 4 ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 4 ∈ ℝ)
441, 43leloed 11404 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 4 ↔ (𝑁 < 4 ∨ 𝑁 = 4)))
45 4p1e5 12412 . . . . . . . . . . . . . . . 16 (4 + 1) = 5
4645breq2i 5151 . . . . . . . . . . . . . . 15 (𝑁 < (4 + 1) ↔ 𝑁 < 5)
4746a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 < (4 + 1) ↔ 𝑁 < 5))
4841, 44, 473bitr3rd 310 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (𝑁 < 5 ↔ (𝑁 < 4 ∨ 𝑁 = 4)))
49 3z 12650 . . . . . . . . . . . . . . . . 17 3 ∈ ℤ
50 zleltp1 12668 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ∈ ℤ) → (𝑁 ≤ 3 ↔ 𝑁 < (3 + 1)))
515, 49, 50sylancl 586 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 3 ↔ 𝑁 < (3 + 1)))
52 3re 12346 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
5352a1i 11 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 3 ∈ ℝ)
541, 53leloed 11404 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 3 ↔ (𝑁 < 3 ∨ 𝑁 = 3)))
55 3p1e4 12411 . . . . . . . . . . . . . . . . . 18 (3 + 1) = 4
5655breq2i 5151 . . . . . . . . . . . . . . . . 17 (𝑁 < (3 + 1) ↔ 𝑁 < 4)
5756a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 < (3 + 1) ↔ 𝑁 < 4))
5851, 54, 573bitr3rd 310 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (𝑁 < 4 ↔ (𝑁 < 3 ∨ 𝑁 = 3)))
59 eluz2 12884 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
60 2re 12340 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
6160a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → 2 ∈ ℝ)
62 zre 12617 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6361, 62leloed 11404 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
64 3m1e2 12394 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (3 − 1) = 2
6564eqcomi 2746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 = (3 − 1)
6665breq1i 5150 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 < 𝑁 ↔ (3 − 1) < 𝑁)
67 zlem1lt 12669 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (3 ≤ 𝑁 ↔ (3 − 1) < 𝑁))
6849, 67mpan 690 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → (3 ≤ 𝑁 ↔ (3 − 1) < 𝑁))
6968biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℤ → ((3 − 1) < 𝑁 → 3 ≤ 𝑁))
7066, 69biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → (2 < 𝑁 → 3 ≤ 𝑁))
7152a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → 3 ∈ ℝ)
7271, 62lenltd 11407 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℤ → (3 ≤ 𝑁 ↔ ¬ 𝑁 < 3))
73 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑁 < 3 → (𝑁 < 3 → 𝑁 = 2))
7472, 73biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → (3 ≤ 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
7570, 74syldc 48 . . . . . . . . . . . . . . . . . . . . . . 23 (2 < 𝑁 → (𝑁 ∈ ℤ → (𝑁 < 3 → 𝑁 = 2)))
76 eqcom 2744 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 = 𝑁𝑁 = 2)
7776biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 = 𝑁𝑁 = 2)
78772a1d 26 . . . . . . . . . . . . . . . . . . . . . . 23 (2 = 𝑁 → (𝑁 ∈ ℤ → (𝑁 < 3 → 𝑁 = 2)))
7975, 78jaoi 858 . . . . . . . . . . . . . . . . . . . . . 22 ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 ∈ ℤ → (𝑁 < 3 → 𝑁 = 2)))
8079com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 < 3 → 𝑁 = 2)))
8163, 80sylbid 240 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
8281imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 → 𝑁 = 2))
83 2lt3 12438 . . . . . . . . . . . . . . . . . . . 20 2 < 3
84 breq1 5146 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = 2 → (𝑁 < 3 ↔ 2 < 3))
8583, 84mpbiri 258 . . . . . . . . . . . . . . . . . . 19 (𝑁 = 2 → 𝑁 < 3)
8682, 85impbid1 225 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 ↔ 𝑁 = 2))
87863adant1 1131 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 ↔ 𝑁 = 2))
8859, 87sylbi 217 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 < 3 ↔ 𝑁 = 2))
8988orbi1d 917 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 3 ∨ 𝑁 = 3) ↔ (𝑁 = 2 ∨ 𝑁 = 3)))
9058, 89bitrd 279 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 < 4 ↔ (𝑁 = 2 ∨ 𝑁 = 3)))
9190orbi1d 917 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 4 ∨ 𝑁 = 4) ↔ ((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4)))
9248, 91bitrd 279 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 < 5 ↔ ((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4)))
9392orbi1d 917 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 5 ∨ 𝑁 = 5) ↔ (((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5)))
9438, 93bitrd 279 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 < 6 ↔ (((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5)))
9594orbi1d 917 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 6 ∨ 𝑁 = 6) ↔ ((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6)))
9627, 95bitrd 279 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 < 7 ↔ ((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6)))
9796orbi1d 917 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 7 ∨ 𝑁 = 7) ↔ (((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7)))
9816, 97bitrd 279 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑁 < 8 ↔ (((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7)))
9998orbi1d 917 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 8 ∨ 𝑁 = 8) ↔ ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8)))
10099biimpd 229 . . . 4 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 8 ∨ 𝑁 = 8) → ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8)))
1014, 100sylbid 240 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 8 → ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8)))
102101imp 406 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ≤ 8) → ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8))
103 2prm 16729 . . . . . . . . . 10 2 ∈ ℙ
104 eleq1 2829 . . . . . . . . . 10 (𝑁 = 2 → (𝑁 ∈ ℙ ↔ 2 ∈ ℙ))
105103, 104mpbiri 258 . . . . . . . . 9 (𝑁 = 2 → 𝑁 ∈ ℙ)
106 nnsum3primesprm 47777 . . . . . . . . 9 (𝑁 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
107105, 106syl 17 . . . . . . . 8 (𝑁 = 2 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
108 3prm 16731 . . . . . . . . . 10 3 ∈ ℙ
109 eleq1 2829 . . . . . . . . . 10 (𝑁 = 3 → (𝑁 ∈ ℙ ↔ 3 ∈ ℙ))
110108, 109mpbiri 258 . . . . . . . . 9 (𝑁 = 3 → 𝑁 ∈ ℙ)
111110, 106syl 17 . . . . . . . 8 (𝑁 = 3 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
112107, 111jaoi 858 . . . . . . 7 ((𝑁 = 2 ∨ 𝑁 = 3) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
113 nnsum3primes4 47775 . . . . . . . 8 𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))
114 eqeq1 2741 . . . . . . . . . 10 (𝑁 = 4 → (𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
115114anbi2d 630 . . . . . . . . 9 (𝑁 = 4 → ((𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
1161152rexbidv 3222 . . . . . . . 8 (𝑁 = 4 → (∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
117113, 116mpbiri 258 . . . . . . 7 (𝑁 = 4 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
118112, 117jaoi 858 . . . . . 6 (((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
119 5prm 17146 . . . . . . . 8 5 ∈ ℙ
120 eleq1 2829 . . . . . . . 8 (𝑁 = 5 → (𝑁 ∈ ℙ ↔ 5 ∈ ℙ))
121119, 120mpbiri 258 . . . . . . 7 (𝑁 = 5 → 𝑁 ∈ ℙ)
122121, 106syl 17 . . . . . 6 (𝑁 = 5 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
123118, 122jaoi 858 . . . . 5 ((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
124 6gbe 47758 . . . . . . 7 6 ∈ GoldbachEven
125 eleq1 2829 . . . . . . 7 (𝑁 = 6 → (𝑁 ∈ GoldbachEven ↔ 6 ∈ GoldbachEven ))
126124, 125mpbiri 258 . . . . . 6 (𝑁 = 6 → 𝑁 ∈ GoldbachEven )
127 nnsum3primesgbe 47779 . . . . . 6 (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
128126, 127syl 17 . . . . 5 (𝑁 = 6 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
129123, 128jaoi 858 . . . 4 (((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
130 7prm 17148 . . . . . 6 7 ∈ ℙ
131 eleq1 2829 . . . . . 6 (𝑁 = 7 → (𝑁 ∈ ℙ ↔ 7 ∈ ℙ))
132130, 131mpbiri 258 . . . . 5 (𝑁 = 7 → 𝑁 ∈ ℙ)
133132, 106syl 17 . . . 4 (𝑁 = 7 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
134129, 133jaoi 858 . . 3 ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
135 8gbe 47760 . . . . 5 8 ∈ GoldbachEven
136 eleq1 2829 . . . . 5 (𝑁 = 8 → (𝑁 ∈ GoldbachEven ↔ 8 ∈ GoldbachEven ))
137135, 136mpbiri 258 . . . 4 (𝑁 = 8 → 𝑁 ∈ GoldbachEven )
138137, 127syl 17 . . 3 (𝑁 = 8 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
139134, 138jaoi 858 . 2 (((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
140102, 139syl 17 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  m cmap 8866  cr 11154  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cmin 11492  cn 12266  2c2 12321  3c3 12322  4c4 12323  5c5 12324  6c6 12325  7c7 12326  8c8 12327  cz 12613  cuz 12878  ...cfz 13547  Σcsu 15722  cprime 16708   GoldbachEven cgbe 47732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-dvds 16291  df-prm 16709  df-even 47613  df-odd 47614  df-gbe 47735
This theorem is referenced by:  nnsum4primesle9  47782  bgoldbnnsum3prm  47791
  Copyright terms: Public domain W3C validator