Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primesle9 Structured version   Visualization version   GIF version

Theorem nnsum3primesle9 47719
Description: Every integer greater than 1 and less than or equal to 8 is the sum of at most 3 primes. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
nnsum3primesle9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑁,𝑑,𝑓,𝑘

Proof of Theorem nnsum3primesle9
StepHypRef Expression
1 eluzelre 12887 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
2 8re 12360 . . . . . 6 8 ∈ ℝ
32a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘2) → 8 ∈ ℝ)
41, 3leloed 11402 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 8 ↔ (𝑁 < 8 ∨ 𝑁 = 8)))
5 eluzelz 12886 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
6 7nn 12356 . . . . . . . . . 10 7 ∈ ℕ
76nnzi 12639 . . . . . . . . 9 7 ∈ ℤ
8 zleltp1 12666 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 7 ∈ ℤ) → (𝑁 ≤ 7 ↔ 𝑁 < (7 + 1)))
95, 7, 8sylancl 586 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 7 ↔ 𝑁 < (7 + 1)))
10 7re 12357 . . . . . . . . . 10 7 ∈ ℝ
1110a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 7 ∈ ℝ)
121, 11leloed 11402 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 7 ↔ (𝑁 < 7 ∨ 𝑁 = 7)))
13 7p1e8 12413 . . . . . . . . . 10 (7 + 1) = 8
1413breq2i 5156 . . . . . . . . 9 (𝑁 < (7 + 1) ↔ 𝑁 < 8)
1514a1i 11 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 < (7 + 1) ↔ 𝑁 < 8))
169, 12, 153bitr3rd 310 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 < 8 ↔ (𝑁 < 7 ∨ 𝑁 = 7)))
17 6nn 12353 . . . . . . . . . . . 12 6 ∈ ℕ
1817nnzi 12639 . . . . . . . . . . 11 6 ∈ ℤ
19 zleltp1 12666 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 6 ∈ ℤ) → (𝑁 ≤ 6 ↔ 𝑁 < (6 + 1)))
205, 18, 19sylancl 586 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 6 ↔ 𝑁 < (6 + 1)))
21 6re 12354 . . . . . . . . . . . 12 6 ∈ ℝ
2221a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 6 ∈ ℝ)
231, 22leloed 11402 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 6 ↔ (𝑁 < 6 ∨ 𝑁 = 6)))
24 6p1e7 12412 . . . . . . . . . . . 12 (6 + 1) = 7
2524breq2i 5156 . . . . . . . . . . 11 (𝑁 < (6 + 1) ↔ 𝑁 < 7)
2625a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 < (6 + 1) ↔ 𝑁 < 7))
2720, 23, 263bitr3rd 310 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 < 7 ↔ (𝑁 < 6 ∨ 𝑁 = 6)))
28 5nn 12350 . . . . . . . . . . . . . 14 5 ∈ ℕ
2928nnzi 12639 . . . . . . . . . . . . 13 5 ∈ ℤ
30 zleltp1 12666 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 5 ∈ ℤ) → (𝑁 ≤ 5 ↔ 𝑁 < (5 + 1)))
315, 29, 30sylancl 586 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 5 ↔ 𝑁 < (5 + 1)))
32 5re 12351 . . . . . . . . . . . . . 14 5 ∈ ℝ
3332a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → 5 ∈ ℝ)
341, 33leloed 11402 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 5 ↔ (𝑁 < 5 ∨ 𝑁 = 5)))
35 5p1e6 12411 . . . . . . . . . . . . . 14 (5 + 1) = 6
3635breq2i 5156 . . . . . . . . . . . . 13 (𝑁 < (5 + 1) ↔ 𝑁 < 6)
3736a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 < (5 + 1) ↔ 𝑁 < 6))
3831, 34, 373bitr3rd 310 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 < 6 ↔ (𝑁 < 5 ∨ 𝑁 = 5)))
39 4z 12649 . . . . . . . . . . . . . . 15 4 ∈ ℤ
40 zleltp1 12666 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 4 ∈ ℤ) → (𝑁 ≤ 4 ↔ 𝑁 < (4 + 1)))
415, 39, 40sylancl 586 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 4 ↔ 𝑁 < (4 + 1)))
42 4re 12348 . . . . . . . . . . . . . . . 16 4 ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 4 ∈ ℝ)
441, 43leloed 11402 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 4 ↔ (𝑁 < 4 ∨ 𝑁 = 4)))
45 4p1e5 12410 . . . . . . . . . . . . . . . 16 (4 + 1) = 5
4645breq2i 5156 . . . . . . . . . . . . . . 15 (𝑁 < (4 + 1) ↔ 𝑁 < 5)
4746a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 < (4 + 1) ↔ 𝑁 < 5))
4841, 44, 473bitr3rd 310 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (𝑁 < 5 ↔ (𝑁 < 4 ∨ 𝑁 = 4)))
49 3z 12648 . . . . . . . . . . . . . . . . 17 3 ∈ ℤ
50 zleltp1 12666 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ∈ ℤ) → (𝑁 ≤ 3 ↔ 𝑁 < (3 + 1)))
515, 49, 50sylancl 586 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 3 ↔ 𝑁 < (3 + 1)))
52 3re 12344 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
5352a1i 11 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 3 ∈ ℝ)
541, 53leloed 11402 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 3 ↔ (𝑁 < 3 ∨ 𝑁 = 3)))
55 3p1e4 12409 . . . . . . . . . . . . . . . . . 18 (3 + 1) = 4
5655breq2i 5156 . . . . . . . . . . . . . . . . 17 (𝑁 < (3 + 1) ↔ 𝑁 < 4)
5756a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 < (3 + 1) ↔ 𝑁 < 4))
5851, 54, 573bitr3rd 310 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (𝑁 < 4 ↔ (𝑁 < 3 ∨ 𝑁 = 3)))
59 eluz2 12882 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
60 2re 12338 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
6160a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → 2 ∈ ℝ)
62 zre 12615 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6361, 62leloed 11402 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
64 3m1e2 12392 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (3 − 1) = 2
6564eqcomi 2744 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 = (3 − 1)
6665breq1i 5155 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 < 𝑁 ↔ (3 − 1) < 𝑁)
67 zlem1lt 12667 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (3 ≤ 𝑁 ↔ (3 − 1) < 𝑁))
6849, 67mpan 690 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → (3 ≤ 𝑁 ↔ (3 − 1) < 𝑁))
6968biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℤ → ((3 − 1) < 𝑁 → 3 ≤ 𝑁))
7066, 69biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → (2 < 𝑁 → 3 ≤ 𝑁))
7152a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → 3 ∈ ℝ)
7271, 62lenltd 11405 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℤ → (3 ≤ 𝑁 ↔ ¬ 𝑁 < 3))
73 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑁 < 3 → (𝑁 < 3 → 𝑁 = 2))
7472, 73biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → (3 ≤ 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
7570, 74syldc 48 . . . . . . . . . . . . . . . . . . . . . . 23 (2 < 𝑁 → (𝑁 ∈ ℤ → (𝑁 < 3 → 𝑁 = 2)))
76 eqcom 2742 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 = 𝑁𝑁 = 2)
7776biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 = 𝑁𝑁 = 2)
78772a1d 26 . . . . . . . . . . . . . . . . . . . . . . 23 (2 = 𝑁 → (𝑁 ∈ ℤ → (𝑁 < 3 → 𝑁 = 2)))
7975, 78jaoi 857 . . . . . . . . . . . . . . . . . . . . . 22 ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 ∈ ℤ → (𝑁 < 3 → 𝑁 = 2)))
8079com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 < 3 → 𝑁 = 2)))
8163, 80sylbid 240 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
8281imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 → 𝑁 = 2))
83 2lt3 12436 . . . . . . . . . . . . . . . . . . . 20 2 < 3
84 breq1 5151 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = 2 → (𝑁 < 3 ↔ 2 < 3))
8583, 84mpbiri 258 . . . . . . . . . . . . . . . . . . 19 (𝑁 = 2 → 𝑁 < 3)
8682, 85impbid1 225 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 ↔ 𝑁 = 2))
87863adant1 1129 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 ↔ 𝑁 = 2))
8859, 87sylbi 217 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 < 3 ↔ 𝑁 = 2))
8988orbi1d 916 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 3 ∨ 𝑁 = 3) ↔ (𝑁 = 2 ∨ 𝑁 = 3)))
9058, 89bitrd 279 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (𝑁 < 4 ↔ (𝑁 = 2 ∨ 𝑁 = 3)))
9190orbi1d 916 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 4 ∨ 𝑁 = 4) ↔ ((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4)))
9248, 91bitrd 279 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 < 5 ↔ ((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4)))
9392orbi1d 916 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 5 ∨ 𝑁 = 5) ↔ (((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5)))
9438, 93bitrd 279 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 < 6 ↔ (((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5)))
9594orbi1d 916 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 6 ∨ 𝑁 = 6) ↔ ((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6)))
9627, 95bitrd 279 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 < 7 ↔ ((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6)))
9796orbi1d 916 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 7 ∨ 𝑁 = 7) ↔ (((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7)))
9816, 97bitrd 279 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑁 < 8 ↔ (((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7)))
9998orbi1d 916 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 8 ∨ 𝑁 = 8) ↔ ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8)))
10099biimpd 229 . . . 4 (𝑁 ∈ (ℤ‘2) → ((𝑁 < 8 ∨ 𝑁 = 8) → ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8)))
1014, 100sylbid 240 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 ≤ 8 → ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8)))
102101imp 406 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ≤ 8) → ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8))
103 2prm 16726 . . . . . . . . . 10 2 ∈ ℙ
104 eleq1 2827 . . . . . . . . . 10 (𝑁 = 2 → (𝑁 ∈ ℙ ↔ 2 ∈ ℙ))
105103, 104mpbiri 258 . . . . . . . . 9 (𝑁 = 2 → 𝑁 ∈ ℙ)
106 nnsum3primesprm 47715 . . . . . . . . 9 (𝑁 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
107105, 106syl 17 . . . . . . . 8 (𝑁 = 2 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
108 3prm 16728 . . . . . . . . . 10 3 ∈ ℙ
109 eleq1 2827 . . . . . . . . . 10 (𝑁 = 3 → (𝑁 ∈ ℙ ↔ 3 ∈ ℙ))
110108, 109mpbiri 258 . . . . . . . . 9 (𝑁 = 3 → 𝑁 ∈ ℙ)
111110, 106syl 17 . . . . . . . 8 (𝑁 = 3 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
112107, 111jaoi 857 . . . . . . 7 ((𝑁 = 2 ∨ 𝑁 = 3) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
113 nnsum3primes4 47713 . . . . . . . 8 𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))
114 eqeq1 2739 . . . . . . . . . 10 (𝑁 = 4 → (𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
115114anbi2d 630 . . . . . . . . 9 (𝑁 = 4 → ((𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
1161152rexbidv 3220 . . . . . . . 8 (𝑁 = 4 → (∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
117113, 116mpbiri 258 . . . . . . 7 (𝑁 = 4 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
118112, 117jaoi 857 . . . . . 6 (((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
119 5prm 17143 . . . . . . . 8 5 ∈ ℙ
120 eleq1 2827 . . . . . . . 8 (𝑁 = 5 → (𝑁 ∈ ℙ ↔ 5 ∈ ℙ))
121119, 120mpbiri 258 . . . . . . 7 (𝑁 = 5 → 𝑁 ∈ ℙ)
122121, 106syl 17 . . . . . 6 (𝑁 = 5 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
123118, 122jaoi 857 . . . . 5 ((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
124 6gbe 47696 . . . . . . 7 6 ∈ GoldbachEven
125 eleq1 2827 . . . . . . 7 (𝑁 = 6 → (𝑁 ∈ GoldbachEven ↔ 6 ∈ GoldbachEven ))
126124, 125mpbiri 258 . . . . . 6 (𝑁 = 6 → 𝑁 ∈ GoldbachEven )
127 nnsum3primesgbe 47717 . . . . . 6 (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
128126, 127syl 17 . . . . 5 (𝑁 = 6 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
129123, 128jaoi 857 . . . 4 (((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
130 7prm 17145 . . . . . 6 7 ∈ ℙ
131 eleq1 2827 . . . . . 6 (𝑁 = 7 → (𝑁 ∈ ℙ ↔ 7 ∈ ℙ))
132130, 131mpbiri 258 . . . . 5 (𝑁 = 7 → 𝑁 ∈ ℙ)
133132, 106syl 17 . . . 4 (𝑁 = 7 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
134129, 133jaoi 857 . . 3 ((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
135 8gbe 47698 . . . . 5 8 ∈ GoldbachEven
136 eleq1 2827 . . . . 5 (𝑁 = 8 → (𝑁 ∈ GoldbachEven ↔ 8 ∈ GoldbachEven ))
137135, 136mpbiri 258 . . . 4 (𝑁 = 8 → 𝑁 ∈ GoldbachEven )
138137, 127syl 17 . . 3 (𝑁 = 8 → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
139134, 138jaoi 857 . 2 (((((((𝑁 = 2 ∨ 𝑁 = 3) ∨ 𝑁 = 4) ∨ 𝑁 = 5) ∨ 𝑁 = 6) ∨ 𝑁 = 7) ∨ 𝑁 = 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
140102, 139syl 17 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431  m cmap 8865  cr 11152  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  cn 12264  2c2 12319  3c3 12320  4c4 12321  5c5 12322  6c6 12323  7c7 12324  8c8 12325  cz 12611  cuz 12876  ...cfz 13544  Σcsu 15719  cprime 16705   GoldbachEven cgbe 47670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-dvds 16288  df-prm 16706  df-even 47551  df-odd 47552  df-gbe 47673
This theorem is referenced by:  nnsum4primesle9  47720  bgoldbnnsum3prm  47729
  Copyright terms: Public domain W3C validator