Proof of Theorem 83prm
| Step | Hyp | Ref
| Expression |
| 1 | | 8nn0 12549 |
. . 3
⊢ 8 ∈
ℕ0 |
| 2 | | 3nn 12345 |
. . 3
⊢ 3 ∈
ℕ |
| 3 | 1, 2 | decnncl 12753 |
. 2
⊢ ;83 ∈ ℕ |
| 4 | | 4nn0 12545 |
. . . 4
⊢ 4 ∈
ℕ0 |
| 5 | 1, 4 | deccl 12748 |
. . 3
⊢ ;84 ∈
ℕ0 |
| 6 | | 3nn0 12544 |
. . 3
⊢ 3 ∈
ℕ0 |
| 7 | | 1nn0 12542 |
. . 3
⊢ 1 ∈
ℕ0 |
| 8 | | 3lt10 12870 |
. . 3
⊢ 3 <
;10 |
| 9 | | 8nn 12361 |
. . . 4
⊢ 8 ∈
ℕ |
| 10 | | 8lt10 12865 |
. . . 4
⊢ 8 <
;10 |
| 11 | 9, 4, 1, 10 | declti 12771 |
. . 3
⊢ 8 <
;84 |
| 12 | 1, 5, 6, 7, 8, 11 | decltc 12762 |
. 2
⊢ ;83 < ;;841 |
| 13 | | 1lt10 12872 |
. . 3
⊢ 1 <
;10 |
| 14 | 9, 6, 7, 13 | declti 12771 |
. 2
⊢ 1 <
;83 |
| 15 | | 2cn 12341 |
. . . 4
⊢ 2 ∈
ℂ |
| 16 | 15 | mullidi 11266 |
. . 3
⊢ (1
· 2) = 2 |
| 17 | | df-3 12330 |
. . 3
⊢ 3 = (2 +
1) |
| 18 | 1, 7, 16, 17 | dec2dvds 17101 |
. 2
⊢ ¬ 2
∥ ;83 |
| 19 | | 2nn0 12543 |
. . . 4
⊢ 2 ∈
ℕ0 |
| 20 | | 7nn0 12548 |
. . . 4
⊢ 7 ∈
ℕ0 |
| 21 | 19, 20 | deccl 12748 |
. . 3
⊢ ;27 ∈
ℕ0 |
| 22 | | 2nn 12339 |
. . 3
⊢ 2 ∈
ℕ |
| 23 | | 0nn0 12541 |
. . . 4
⊢ 0 ∈
ℕ0 |
| 24 | | eqid 2737 |
. . . 4
⊢ ;27 = ;27 |
| 25 | 19 | dec0h 12755 |
. . . 4
⊢ 2 = ;02 |
| 26 | | 3t2e6 12432 |
. . . . . 6
⊢ (3
· 2) = 6 |
| 27 | 15 | addlidi 11449 |
. . . . . 6
⊢ (0 + 2) =
2 |
| 28 | 26, 27 | oveq12i 7443 |
. . . . 5
⊢ ((3
· 2) + (0 + 2)) = (6 + 2) |
| 29 | | 6p2e8 12425 |
. . . . 5
⊢ (6 + 2) =
8 |
| 30 | 28, 29 | eqtri 2765 |
. . . 4
⊢ ((3
· 2) + (0 + 2)) = 8 |
| 31 | 20 | nn0cni 12538 |
. . . . . 6
⊢ 7 ∈
ℂ |
| 32 | | 3cn 12347 |
. . . . . 6
⊢ 3 ∈
ℂ |
| 33 | | 7t3e21 12843 |
. . . . . 6
⊢ (7
· 3) = ;21 |
| 34 | 31, 32, 33 | mulcomli 11270 |
. . . . 5
⊢ (3
· 7) = ;21 |
| 35 | | 1p2e3 12409 |
. . . . 5
⊢ (1 + 2) =
3 |
| 36 | 19, 7, 19, 34, 35 | decaddi 12793 |
. . . 4
⊢ ((3
· 7) + 2) = ;23 |
| 37 | 19, 20, 23, 19, 24, 25, 6, 6, 19, 30, 36 | decma2c 12786 |
. . 3
⊢ ((3
· ;27) + 2) = ;83 |
| 38 | | 2lt3 12438 |
. . 3
⊢ 2 <
3 |
| 39 | 2, 21, 22, 37, 38 | ndvdsi 16449 |
. 2
⊢ ¬ 3
∥ ;83 |
| 40 | | 3lt5 12444 |
. . 3
⊢ 3 <
5 |
| 41 | 1, 2, 40 | dec5dvds 17102 |
. 2
⊢ ¬ 5
∥ ;83 |
| 42 | | 7nn 12358 |
. . 3
⊢ 7 ∈
ℕ |
| 43 | 7, 7 | deccl 12748 |
. . 3
⊢ ;11 ∈
ℕ0 |
| 44 | | 6nn 12355 |
. . 3
⊢ 6 ∈
ℕ |
| 45 | 44 | nnnn0i 12534 |
. . . 4
⊢ 6 ∈
ℕ0 |
| 46 | | eqid 2737 |
. . . 4
⊢ ;11 = ;11 |
| 47 | 45 | dec0h 12755 |
. . . 4
⊢ 6 = ;06 |
| 48 | 31 | mulridi 11265 |
. . . . . 6
⊢ (7
· 1) = 7 |
| 49 | | ax-1cn 11213 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 50 | 49 | addlidi 11449 |
. . . . . 6
⊢ (0 + 1) =
1 |
| 51 | 48, 50 | oveq12i 7443 |
. . . . 5
⊢ ((7
· 1) + (0 + 1)) = (7 + 1) |
| 52 | | 7p1e8 12415 |
. . . . 5
⊢ (7 + 1) =
8 |
| 53 | 51, 52 | eqtri 2765 |
. . . 4
⊢ ((7
· 1) + (0 + 1)) = 8 |
| 54 | 48 | oveq1i 7441 |
. . . . 5
⊢ ((7
· 1) + 6) = (7 + 6) |
| 55 | | 7p6e13 12811 |
. . . . 5
⊢ (7 + 6) =
;13 |
| 56 | 54, 55 | eqtri 2765 |
. . . 4
⊢ ((7
· 1) + 6) = ;13 |
| 57 | 7, 7, 23, 45, 46, 47, 20, 6, 7, 53, 56 | decma2c 12786 |
. . 3
⊢ ((7
· ;11) + 6) = ;83 |
| 58 | | 6lt7 12452 |
. . 3
⊢ 6 <
7 |
| 59 | 42, 43, 44, 57, 58 | ndvdsi 16449 |
. 2
⊢ ¬ 7
∥ ;83 |
| 60 | | 1nn 12277 |
. . . 4
⊢ 1 ∈
ℕ |
| 61 | 7, 60 | decnncl 12753 |
. . 3
⊢ ;11 ∈ ℕ |
| 62 | 61 | nncni 12276 |
. . . . . 6
⊢ ;11 ∈ ℂ |
| 63 | 62, 31 | mulcomi 11269 |
. . . . 5
⊢ (;11 · 7) = (7 · ;11) |
| 64 | 63 | oveq1i 7441 |
. . . 4
⊢ ((;11 · 7) + 6) = ((7 ·
;11) + 6) |
| 65 | 64, 57 | eqtri 2765 |
. . 3
⊢ ((;11 · 7) + 6) = ;83 |
| 66 | | 6lt10 12867 |
. . . 4
⊢ 6 <
;10 |
| 67 | 60, 7, 45, 66 | declti 12771 |
. . 3
⊢ 6 <
;11 |
| 68 | 61, 20, 44, 65, 67 | ndvdsi 16449 |
. 2
⊢ ¬
;11 ∥ ;83 |
| 69 | 7, 2 | decnncl 12753 |
. . 3
⊢ ;13 ∈ ℕ |
| 70 | | 5nn 12352 |
. . 3
⊢ 5 ∈
ℕ |
| 71 | 70 | nnnn0i 12534 |
. . . 4
⊢ 5 ∈
ℕ0 |
| 72 | | eqid 2737 |
. . . 4
⊢ ;13 = ;13 |
| 73 | 71 | dec0h 12755 |
. . . 4
⊢ 5 = ;05 |
| 74 | | 6cn 12357 |
. . . . . . 7
⊢ 6 ∈
ℂ |
| 75 | 74 | mullidi 11266 |
. . . . . 6
⊢ (1
· 6) = 6 |
| 76 | 75, 27 | oveq12i 7443 |
. . . . 5
⊢ ((1
· 6) + (0 + 2)) = (6 + 2) |
| 77 | 76, 29 | eqtri 2765 |
. . . 4
⊢ ((1
· 6) + (0 + 2)) = 8 |
| 78 | | 6t3e18 12838 |
. . . . . 6
⊢ (6
· 3) = ;18 |
| 79 | 74, 32, 78 | mulcomli 11270 |
. . . . 5
⊢ (3
· 6) = ;18 |
| 80 | | 1p1e2 12391 |
. . . . 5
⊢ (1 + 1) =
2 |
| 81 | | 8p5e13 12816 |
. . . . 5
⊢ (8 + 5) =
;13 |
| 82 | 7, 1, 71, 79, 80, 6, 81 | decaddci 12794 |
. . . 4
⊢ ((3
· 6) + 5) = ;23 |
| 83 | 7, 6, 23, 71, 72, 73, 45, 6, 19, 77, 82 | decmac 12785 |
. . 3
⊢ ((;13 · 6) + 5) = ;83 |
| 84 | | 5lt10 12868 |
. . . 4
⊢ 5 <
;10 |
| 85 | 60, 6, 71, 84 | declti 12771 |
. . 3
⊢ 5 <
;13 |
| 86 | 69, 45, 70, 83, 85 | ndvdsi 16449 |
. 2
⊢ ¬
;13 ∥ ;83 |
| 87 | 7, 42 | decnncl 12753 |
. . 3
⊢ ;17 ∈ ℕ |
| 88 | 7, 70 | decnncl 12753 |
. . 3
⊢ ;15 ∈ ℕ |
| 89 | | eqid 2737 |
. . . 4
⊢ ;17 = ;17 |
| 90 | | eqid 2737 |
. . . 4
⊢ ;15 = ;15 |
| 91 | 4 | nn0cni 12538 |
. . . . . . 7
⊢ 4 ∈
ℂ |
| 92 | 91 | mullidi 11266 |
. . . . . 6
⊢ (1
· 4) = 4 |
| 93 | | 3p1e4 12411 |
. . . . . . 7
⊢ (3 + 1) =
4 |
| 94 | 32, 49, 93 | addcomli 11453 |
. . . . . 6
⊢ (1 + 3) =
4 |
| 95 | 92, 94 | oveq12i 7443 |
. . . . 5
⊢ ((1
· 4) + (1 + 3)) = (4 + 4) |
| 96 | | 4p4e8 12421 |
. . . . 5
⊢ (4 + 4) =
8 |
| 97 | 95, 96 | eqtri 2765 |
. . . 4
⊢ ((1
· 4) + (1 + 3)) = 8 |
| 98 | | 7t4e28 12844 |
. . . . 5
⊢ (7
· 4) = ;28 |
| 99 | | 2p1e3 12408 |
. . . . 5
⊢ (2 + 1) =
3 |
| 100 | 19, 1, 71, 98, 99, 6, 81 | decaddci 12794 |
. . . 4
⊢ ((7
· 4) + 5) = ;33 |
| 101 | 7, 20, 7, 71, 89, 90, 4, 6, 6,
97, 100 | decmac 12785 |
. . 3
⊢ ((;17 · 4) + ;15) = ;83 |
| 102 | | 5lt7 12453 |
. . . 4
⊢ 5 <
7 |
| 103 | 7, 71, 42, 102 | declt 12761 |
. . 3
⊢ ;15 < ;17 |
| 104 | 87, 4, 88, 101, 103 | ndvdsi 16449 |
. 2
⊢ ¬
;17 ∥ ;83 |
| 105 | | 9nn 12364 |
. . . 4
⊢ 9 ∈
ℕ |
| 106 | 7, 105 | decnncl 12753 |
. . 3
⊢ ;19 ∈ ℕ |
| 107 | | 9nn0 12550 |
. . . 4
⊢ 9 ∈
ℕ0 |
| 108 | | eqid 2737 |
. . . 4
⊢ ;19 = ;19 |
| 109 | 20 | dec0h 12755 |
. . . 4
⊢ 7 = ;07 |
| 110 | 91 | addlidi 11449 |
. . . . . 6
⊢ (0 + 4) =
4 |
| 111 | 92, 110 | oveq12i 7443 |
. . . . 5
⊢ ((1
· 4) + (0 + 4)) = (4 + 4) |
| 112 | 111, 96 | eqtri 2765 |
. . . 4
⊢ ((1
· 4) + (0 + 4)) = 8 |
| 113 | | 9t4e36 12857 |
. . . . 5
⊢ (9
· 4) = ;36 |
| 114 | 31, 74, 55 | addcomli 11453 |
. . . . 5
⊢ (6 + 7) =
;13 |
| 115 | 6, 45, 20, 113, 93, 6, 114 | decaddci 12794 |
. . . 4
⊢ ((9
· 4) + 7) = ;43 |
| 116 | 7, 107, 23, 20, 108, 109, 4, 6, 4, 112, 115 | decmac 12785 |
. . 3
⊢ ((;19 · 4) + 7) = ;83 |
| 117 | | 7lt10 12866 |
. . . 4
⊢ 7 <
;10 |
| 118 | 60, 107, 20, 117 | declti 12771 |
. . 3
⊢ 7 <
;19 |
| 119 | 106, 4, 42, 116, 118 | ndvdsi 16449 |
. 2
⊢ ¬
;19 ∥ ;83 |
| 120 | 19, 2 | decnncl 12753 |
. . 3
⊢ ;23 ∈ ℕ |
| 121 | | 4nn 12349 |
. . . 4
⊢ 4 ∈
ℕ |
| 122 | 7, 121 | decnncl 12753 |
. . 3
⊢ ;14 ∈ ℕ |
| 123 | | eqid 2737 |
. . . 4
⊢ ;23 = ;23 |
| 124 | | eqid 2737 |
. . . 4
⊢ ;14 = ;14 |
| 125 | 32, 15, 26 | mulcomli 11270 |
. . . . . 6
⊢ (2
· 3) = 6 |
| 126 | 125, 80 | oveq12i 7443 |
. . . . 5
⊢ ((2
· 3) + (1 + 1)) = (6 + 2) |
| 127 | 126, 29 | eqtri 2765 |
. . . 4
⊢ ((2
· 3) + (1 + 1)) = 8 |
| 128 | | 3t3e9 12433 |
. . . . . 6
⊢ (3
· 3) = 9 |
| 129 | 128 | oveq1i 7441 |
. . . . 5
⊢ ((3
· 3) + 4) = (9 + 4) |
| 130 | | 9p4e13 12822 |
. . . . 5
⊢ (9 + 4) =
;13 |
| 131 | 129, 130 | eqtri 2765 |
. . . 4
⊢ ((3
· 3) + 4) = ;13 |
| 132 | 19, 6, 7, 4, 123, 124, 6, 6, 7, 127, 131 | decmac 12785 |
. . 3
⊢ ((;23 · 3) + ;14) = ;83 |
| 133 | | 4lt10 12869 |
. . . 4
⊢ 4 <
;10 |
| 134 | | 1lt2 12437 |
. . . 4
⊢ 1 <
2 |
| 135 | 7, 19, 4, 6, 133, 134 | decltc 12762 |
. . 3
⊢ ;14 < ;23 |
| 136 | 120, 6, 122, 132, 135 | ndvdsi 16449 |
. 2
⊢ ¬
;23 ∥ ;83 |
| 137 | 3, 12, 14, 18, 39, 41, 59, 68, 86, 104, 119, 136 | prmlem2 17157 |
1
⊢ ;83 ∈ ℙ |