Proof of Theorem 83prm
Step | Hyp | Ref
| Expression |
1 | | 8nn0 12256 |
. . 3
⊢ 8 ∈
ℕ0 |
2 | | 3nn 12052 |
. . 3
⊢ 3 ∈
ℕ |
3 | 1, 2 | decnncl 12457 |
. 2
⊢ ;83 ∈ ℕ |
4 | | 4nn0 12252 |
. . . 4
⊢ 4 ∈
ℕ0 |
5 | 1, 4 | deccl 12452 |
. . 3
⊢ ;84 ∈
ℕ0 |
6 | | 3nn0 12251 |
. . 3
⊢ 3 ∈
ℕ0 |
7 | | 1nn0 12249 |
. . 3
⊢ 1 ∈
ℕ0 |
8 | | 3lt10 12574 |
. . 3
⊢ 3 <
;10 |
9 | | 8nn 12068 |
. . . 4
⊢ 8 ∈
ℕ |
10 | | 8lt10 12569 |
. . . 4
⊢ 8 <
;10 |
11 | 9, 4, 1, 10 | declti 12475 |
. . 3
⊢ 8 <
;84 |
12 | 1, 5, 6, 7, 8, 11 | decltc 12466 |
. 2
⊢ ;83 < ;;841 |
13 | | 1lt10 12576 |
. . 3
⊢ 1 <
;10 |
14 | 9, 6, 7, 13 | declti 12475 |
. 2
⊢ 1 <
;83 |
15 | | 2cn 12048 |
. . . 4
⊢ 2 ∈
ℂ |
16 | 15 | mulid2i 10980 |
. . 3
⊢ (1
· 2) = 2 |
17 | | df-3 12037 |
. . 3
⊢ 3 = (2 +
1) |
18 | 1, 7, 16, 17 | dec2dvds 16764 |
. 2
⊢ ¬ 2
∥ ;83 |
19 | | 2nn0 12250 |
. . . 4
⊢ 2 ∈
ℕ0 |
20 | | 7nn0 12255 |
. . . 4
⊢ 7 ∈
ℕ0 |
21 | 19, 20 | deccl 12452 |
. . 3
⊢ ;27 ∈
ℕ0 |
22 | | 2nn 12046 |
. . 3
⊢ 2 ∈
ℕ |
23 | | 0nn0 12248 |
. . . 4
⊢ 0 ∈
ℕ0 |
24 | | eqid 2738 |
. . . 4
⊢ ;27 = ;27 |
25 | 19 | dec0h 12459 |
. . . 4
⊢ 2 = ;02 |
26 | | 3t2e6 12139 |
. . . . . 6
⊢ (3
· 2) = 6 |
27 | 15 | addid2i 11163 |
. . . . . 6
⊢ (0 + 2) =
2 |
28 | 26, 27 | oveq12i 7287 |
. . . . 5
⊢ ((3
· 2) + (0 + 2)) = (6 + 2) |
29 | | 6p2e8 12132 |
. . . . 5
⊢ (6 + 2) =
8 |
30 | 28, 29 | eqtri 2766 |
. . . 4
⊢ ((3
· 2) + (0 + 2)) = 8 |
31 | 20 | nn0cni 12245 |
. . . . . 6
⊢ 7 ∈
ℂ |
32 | | 3cn 12054 |
. . . . . 6
⊢ 3 ∈
ℂ |
33 | | 7t3e21 12547 |
. . . . . 6
⊢ (7
· 3) = ;21 |
34 | 31, 32, 33 | mulcomli 10984 |
. . . . 5
⊢ (3
· 7) = ;21 |
35 | | 1p2e3 12116 |
. . . . 5
⊢ (1 + 2) =
3 |
36 | 19, 7, 19, 34, 35 | decaddi 12497 |
. . . 4
⊢ ((3
· 7) + 2) = ;23 |
37 | 19, 20, 23, 19, 24, 25, 6, 6, 19, 30, 36 | decma2c 12490 |
. . 3
⊢ ((3
· ;27) + 2) = ;83 |
38 | | 2lt3 12145 |
. . 3
⊢ 2 <
3 |
39 | 2, 21, 22, 37, 38 | ndvdsi 16121 |
. 2
⊢ ¬ 3
∥ ;83 |
40 | | 3lt5 12151 |
. . 3
⊢ 3 <
5 |
41 | 1, 2, 40 | dec5dvds 16765 |
. 2
⊢ ¬ 5
∥ ;83 |
42 | | 7nn 12065 |
. . 3
⊢ 7 ∈
ℕ |
43 | 7, 7 | deccl 12452 |
. . 3
⊢ ;11 ∈
ℕ0 |
44 | | 6nn 12062 |
. . 3
⊢ 6 ∈
ℕ |
45 | 44 | nnnn0i 12241 |
. . . 4
⊢ 6 ∈
ℕ0 |
46 | | eqid 2738 |
. . . 4
⊢ ;11 = ;11 |
47 | 45 | dec0h 12459 |
. . . 4
⊢ 6 = ;06 |
48 | 31 | mulid1i 10979 |
. . . . . 6
⊢ (7
· 1) = 7 |
49 | | ax-1cn 10929 |
. . . . . . 7
⊢ 1 ∈
ℂ |
50 | 49 | addid2i 11163 |
. . . . . 6
⊢ (0 + 1) =
1 |
51 | 48, 50 | oveq12i 7287 |
. . . . 5
⊢ ((7
· 1) + (0 + 1)) = (7 + 1) |
52 | | 7p1e8 12122 |
. . . . 5
⊢ (7 + 1) =
8 |
53 | 51, 52 | eqtri 2766 |
. . . 4
⊢ ((7
· 1) + (0 + 1)) = 8 |
54 | 48 | oveq1i 7285 |
. . . . 5
⊢ ((7
· 1) + 6) = (7 + 6) |
55 | | 7p6e13 12515 |
. . . . 5
⊢ (7 + 6) =
;13 |
56 | 54, 55 | eqtri 2766 |
. . . 4
⊢ ((7
· 1) + 6) = ;13 |
57 | 7, 7, 23, 45, 46, 47, 20, 6, 7, 53, 56 | decma2c 12490 |
. . 3
⊢ ((7
· ;11) + 6) = ;83 |
58 | | 6lt7 12159 |
. . 3
⊢ 6 <
7 |
59 | 42, 43, 44, 57, 58 | ndvdsi 16121 |
. 2
⊢ ¬ 7
∥ ;83 |
60 | | 1nn 11984 |
. . . 4
⊢ 1 ∈
ℕ |
61 | 7, 60 | decnncl 12457 |
. . 3
⊢ ;11 ∈ ℕ |
62 | 61 | nncni 11983 |
. . . . . 6
⊢ ;11 ∈ ℂ |
63 | 62, 31 | mulcomi 10983 |
. . . . 5
⊢ (;11 · 7) = (7 · ;11) |
64 | 63 | oveq1i 7285 |
. . . 4
⊢ ((;11 · 7) + 6) = ((7 ·
;11) + 6) |
65 | 64, 57 | eqtri 2766 |
. . 3
⊢ ((;11 · 7) + 6) = ;83 |
66 | | 6lt10 12571 |
. . . 4
⊢ 6 <
;10 |
67 | 60, 7, 45, 66 | declti 12475 |
. . 3
⊢ 6 <
;11 |
68 | 61, 20, 44, 65, 67 | ndvdsi 16121 |
. 2
⊢ ¬
;11 ∥ ;83 |
69 | 7, 2 | decnncl 12457 |
. . 3
⊢ ;13 ∈ ℕ |
70 | | 5nn 12059 |
. . 3
⊢ 5 ∈
ℕ |
71 | 70 | nnnn0i 12241 |
. . . 4
⊢ 5 ∈
ℕ0 |
72 | | eqid 2738 |
. . . 4
⊢ ;13 = ;13 |
73 | 71 | dec0h 12459 |
. . . 4
⊢ 5 = ;05 |
74 | | 6cn 12064 |
. . . . . . 7
⊢ 6 ∈
ℂ |
75 | 74 | mulid2i 10980 |
. . . . . 6
⊢ (1
· 6) = 6 |
76 | 75, 27 | oveq12i 7287 |
. . . . 5
⊢ ((1
· 6) + (0 + 2)) = (6 + 2) |
77 | 76, 29 | eqtri 2766 |
. . . 4
⊢ ((1
· 6) + (0 + 2)) = 8 |
78 | | 6t3e18 12542 |
. . . . . 6
⊢ (6
· 3) = ;18 |
79 | 74, 32, 78 | mulcomli 10984 |
. . . . 5
⊢ (3
· 6) = ;18 |
80 | | 1p1e2 12098 |
. . . . 5
⊢ (1 + 1) =
2 |
81 | | 8p5e13 12520 |
. . . . 5
⊢ (8 + 5) =
;13 |
82 | 7, 1, 71, 79, 80, 6, 81 | decaddci 12498 |
. . . 4
⊢ ((3
· 6) + 5) = ;23 |
83 | 7, 6, 23, 71, 72, 73, 45, 6, 19, 77, 82 | decmac 12489 |
. . 3
⊢ ((;13 · 6) + 5) = ;83 |
84 | | 5lt10 12572 |
. . . 4
⊢ 5 <
;10 |
85 | 60, 6, 71, 84 | declti 12475 |
. . 3
⊢ 5 <
;13 |
86 | 69, 45, 70, 83, 85 | ndvdsi 16121 |
. 2
⊢ ¬
;13 ∥ ;83 |
87 | 7, 42 | decnncl 12457 |
. . 3
⊢ ;17 ∈ ℕ |
88 | 7, 70 | decnncl 12457 |
. . 3
⊢ ;15 ∈ ℕ |
89 | | eqid 2738 |
. . . 4
⊢ ;17 = ;17 |
90 | | eqid 2738 |
. . . 4
⊢ ;15 = ;15 |
91 | 4 | nn0cni 12245 |
. . . . . . 7
⊢ 4 ∈
ℂ |
92 | 91 | mulid2i 10980 |
. . . . . 6
⊢ (1
· 4) = 4 |
93 | | 3p1e4 12118 |
. . . . . . 7
⊢ (3 + 1) =
4 |
94 | 32, 49, 93 | addcomli 11167 |
. . . . . 6
⊢ (1 + 3) =
4 |
95 | 92, 94 | oveq12i 7287 |
. . . . 5
⊢ ((1
· 4) + (1 + 3)) = (4 + 4) |
96 | | 4p4e8 12128 |
. . . . 5
⊢ (4 + 4) =
8 |
97 | 95, 96 | eqtri 2766 |
. . . 4
⊢ ((1
· 4) + (1 + 3)) = 8 |
98 | | 7t4e28 12548 |
. . . . 5
⊢ (7
· 4) = ;28 |
99 | | 2p1e3 12115 |
. . . . 5
⊢ (2 + 1) =
3 |
100 | 19, 1, 71, 98, 99, 6, 81 | decaddci 12498 |
. . . 4
⊢ ((7
· 4) + 5) = ;33 |
101 | 7, 20, 7, 71, 89, 90, 4, 6, 6,
97, 100 | decmac 12489 |
. . 3
⊢ ((;17 · 4) + ;15) = ;83 |
102 | | 5lt7 12160 |
. . . 4
⊢ 5 <
7 |
103 | 7, 71, 42, 102 | declt 12465 |
. . 3
⊢ ;15 < ;17 |
104 | 87, 4, 88, 101, 103 | ndvdsi 16121 |
. 2
⊢ ¬
;17 ∥ ;83 |
105 | | 9nn 12071 |
. . . 4
⊢ 9 ∈
ℕ |
106 | 7, 105 | decnncl 12457 |
. . 3
⊢ ;19 ∈ ℕ |
107 | | 9nn0 12257 |
. . . 4
⊢ 9 ∈
ℕ0 |
108 | | eqid 2738 |
. . . 4
⊢ ;19 = ;19 |
109 | 20 | dec0h 12459 |
. . . 4
⊢ 7 = ;07 |
110 | 91 | addid2i 11163 |
. . . . . 6
⊢ (0 + 4) =
4 |
111 | 92, 110 | oveq12i 7287 |
. . . . 5
⊢ ((1
· 4) + (0 + 4)) = (4 + 4) |
112 | 111, 96 | eqtri 2766 |
. . . 4
⊢ ((1
· 4) + (0 + 4)) = 8 |
113 | | 9t4e36 12561 |
. . . . 5
⊢ (9
· 4) = ;36 |
114 | 31, 74, 55 | addcomli 11167 |
. . . . 5
⊢ (6 + 7) =
;13 |
115 | 6, 45, 20, 113, 93, 6, 114 | decaddci 12498 |
. . . 4
⊢ ((9
· 4) + 7) = ;43 |
116 | 7, 107, 23, 20, 108, 109, 4, 6, 4, 112, 115 | decmac 12489 |
. . 3
⊢ ((;19 · 4) + 7) = ;83 |
117 | | 7lt10 12570 |
. . . 4
⊢ 7 <
;10 |
118 | 60, 107, 20, 117 | declti 12475 |
. . 3
⊢ 7 <
;19 |
119 | 106, 4, 42, 116, 118 | ndvdsi 16121 |
. 2
⊢ ¬
;19 ∥ ;83 |
120 | 19, 2 | decnncl 12457 |
. . 3
⊢ ;23 ∈ ℕ |
121 | | 4nn 12056 |
. . . 4
⊢ 4 ∈
ℕ |
122 | 7, 121 | decnncl 12457 |
. . 3
⊢ ;14 ∈ ℕ |
123 | | eqid 2738 |
. . . 4
⊢ ;23 = ;23 |
124 | | eqid 2738 |
. . . 4
⊢ ;14 = ;14 |
125 | 32, 15, 26 | mulcomli 10984 |
. . . . . 6
⊢ (2
· 3) = 6 |
126 | 125, 80 | oveq12i 7287 |
. . . . 5
⊢ ((2
· 3) + (1 + 1)) = (6 + 2) |
127 | 126, 29 | eqtri 2766 |
. . . 4
⊢ ((2
· 3) + (1 + 1)) = 8 |
128 | | 3t3e9 12140 |
. . . . . 6
⊢ (3
· 3) = 9 |
129 | 128 | oveq1i 7285 |
. . . . 5
⊢ ((3
· 3) + 4) = (9 + 4) |
130 | | 9p4e13 12526 |
. . . . 5
⊢ (9 + 4) =
;13 |
131 | 129, 130 | eqtri 2766 |
. . . 4
⊢ ((3
· 3) + 4) = ;13 |
132 | 19, 6, 7, 4, 123, 124, 6, 6, 7, 127, 131 | decmac 12489 |
. . 3
⊢ ((;23 · 3) + ;14) = ;83 |
133 | | 4lt10 12573 |
. . . 4
⊢ 4 <
;10 |
134 | | 1lt2 12144 |
. . . 4
⊢ 1 <
2 |
135 | 7, 19, 4, 6, 133, 134 | decltc 12466 |
. . 3
⊢ ;14 < ;23 |
136 | 120, 6, 122, 132, 135 | ndvdsi 16121 |
. 2
⊢ ¬
;23 ∥ ;83 |
137 | 3, 12, 14, 18, 39, 41, 59, 68, 86, 104, 119, 136 | prmlem2 16821 |
1
⊢ ;83 ∈ ℙ |