Proof of Theorem hgt750lem
Step | Hyp | Ref
| Expression |
1 | | 7nn0 12185 |
. . . . 5
⊢ 7 ∈
ℕ0 |
2 | | 3re 11983 |
. . . . . . 7
⊢ 3 ∈
ℝ |
3 | | 4re 11987 |
. . . . . . . . 9
⊢ 4 ∈
ℝ |
4 | | 8re 11999 |
. . . . . . . . 9
⊢ 8 ∈
ℝ |
5 | 3, 4 | pm3.2i 470 |
. . . . . . . 8
⊢ (4 ∈
ℝ ∧ 8 ∈ ℝ) |
6 | | dp2cl 31056 |
. . . . . . . 8
⊢ ((4
∈ ℝ ∧ 8 ∈ ℝ) → _48 ∈ ℝ) |
7 | 5, 6 | ax-mp 5 |
. . . . . . 7
⊢ _48 ∈ ℝ |
8 | 2, 7 | pm3.2i 470 |
. . . . . 6
⊢ (3 ∈
ℝ ∧ _48 ∈
ℝ) |
9 | | dp2cl 31056 |
. . . . . 6
⊢ ((3
∈ ℝ ∧ _48 ∈
ℝ) → _3_48 ∈ ℝ) |
10 | 8, 9 | ax-mp 5 |
. . . . 5
⊢ _3_48 ∈ ℝ |
11 | | dpcl 31067 |
. . . . 5
⊢ ((7
∈ ℕ0 ∧ _3_48
∈ ℝ) → (7._3_48) ∈ ℝ) |
12 | 1, 10, 11 | mp2an 688 |
. . . 4
⊢ (7._3_48) ∈ ℝ |
13 | 12 | a1i 11 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → (7._3_48)
∈ ℝ) |
14 | | nn0re 12172 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
15 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → 𝑁 ∈ ℝ) |
16 | | 0re 10908 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
17 | 16 | a1i 11 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → 0 ∈ ℝ) |
18 | | 10re 12385 |
. . . . . . . . 9
⊢ ;10 ∈ ℝ |
19 | | 2nn0 12180 |
. . . . . . . . . 10
⊢ 2 ∈
ℕ0 |
20 | 19, 1 | deccl 12381 |
. . . . . . . . 9
⊢ ;27 ∈
ℕ0 |
21 | | reexpcl 13727 |
. . . . . . . . 9
⊢ ((;10 ∈ ℝ ∧ ;27 ∈ ℕ0) →
(;10↑;27) ∈ ℝ) |
22 | 18, 20, 21 | mp2an 688 |
. . . . . . . 8
⊢ (;10↑;27) ∈ ℝ |
23 | 22 | a1i 11 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → (;10↑;27) ∈ ℝ) |
24 | | 0lt1 11427 |
. . . . . . . . 9
⊢ 0 <
1 |
25 | | 1nn 11914 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ |
26 | | 0nn0 12178 |
. . . . . . . . . . 11
⊢ 0 ∈
ℕ0 |
27 | | 1nn0 12179 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ0 |
28 | | 1re 10906 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ |
29 | | 9re 12002 |
. . . . . . . . . . . 12
⊢ 9 ∈
ℝ |
30 | | 1lt9 12109 |
. . . . . . . . . . . 12
⊢ 1 <
9 |
31 | 28, 29, 30 | ltleii 11028 |
. . . . . . . . . . 11
⊢ 1 ≤
9 |
32 | 25, 26, 27, 31 | declei 12402 |
. . . . . . . . . 10
⊢ 1 ≤
;10 |
33 | | expge1 13748 |
. . . . . . . . . 10
⊢ ((;10 ∈ ℝ ∧ ;27 ∈ ℕ0 ∧ 1
≤ ;10) → 1 ≤ (;10↑;27)) |
34 | 18, 20, 32, 33 | mp3an 1459 |
. . . . . . . . 9
⊢ 1 ≤
(;10↑;27) |
35 | 16, 28, 22 | ltletri 11033 |
. . . . . . . . 9
⊢ ((0 <
1 ∧ 1 ≤ (;10↑;27)) → 0 < (;10↑;27)) |
36 | 24, 34, 35 | mp2an 688 |
. . . . . . . 8
⊢ 0 <
(;10↑;27) |
37 | 36 | a1i 11 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → 0 < (;10↑;27)) |
38 | | simpr 484 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → (;10↑;27) ≤ 𝑁) |
39 | 17, 23, 15, 37, 38 | ltletrd 11065 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → 0 < 𝑁) |
40 | 15, 39 | elrpd 12698 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → 𝑁 ∈
ℝ+) |
41 | 40 | relogcld 25683 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → (log‘𝑁) ∈ ℝ) |
42 | 40 | rpge0d 12705 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → 0 ≤ 𝑁) |
43 | 15, 42 | resqrtcld 15057 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → (√‘𝑁) ∈ ℝ) |
44 | 40 | sqrtgt0d 15052 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → 0 < (√‘𝑁)) |
45 | 17, 44 | gtned 11040 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → (√‘𝑁) ≠ 0) |
46 | 41, 43, 45 | redivcld 11733 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → ((log‘𝑁) / (√‘𝑁)) ∈ ℝ) |
47 | 13, 46 | remulcld 10936 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → ((7._3_48)
· ((log‘𝑁) /
(√‘𝑁))) ∈
ℝ) |
48 | | elrp 12661 |
. . . . . . 7
⊢ ((;10↑;27) ∈ ℝ+ ↔ ((;10↑;27) ∈ ℝ ∧ 0 < (;10↑;27))) |
49 | 22, 36, 48 | mpbir2an 707 |
. . . . . 6
⊢ (;10↑;27) ∈ ℝ+ |
50 | | relogcl 25636 |
. . . . . 6
⊢ ((;10↑;27) ∈ ℝ+ →
(log‘(;10↑;27)) ∈ ℝ) |
51 | 49, 50 | ax-mp 5 |
. . . . 5
⊢
(log‘(;10↑;27)) ∈ ℝ |
52 | 22, 36 | sqrtpclii 15022 |
. . . . 5
⊢
(√‘(;10↑;27)) ∈ ℝ |
53 | 22, 36 | sqrtgt0ii 15023 |
. . . . . 6
⊢ 0 <
(√‘(;10↑;27)) |
54 | 16, 53 | gtneii 11017 |
. . . . 5
⊢
(√‘(;10↑;27)) ≠ 0 |
55 | 51, 52, 54 | redivcli 11672 |
. . . 4
⊢
((log‘(;10↑;27)) / (√‘(;10↑;27))) ∈ ℝ |
56 | 55 | a1i 11 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → ((log‘(;10↑;27)) / (√‘(;10↑;27))) ∈ ℝ) |
57 | 13, 56 | remulcld 10936 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → ((7._3_48)
· ((log‘(;10↑;27)) / (√‘(;10↑;27)))) ∈ ℝ) |
58 | | qssre 12628 |
. . . . 5
⊢ ℚ
⊆ ℝ |
59 | | 4nn0 12182 |
. . . . . . . . 9
⊢ 4 ∈
ℕ0 |
60 | | nn0ssq 12626 |
. . . . . . . . . . . . 13
⊢
ℕ0 ⊆ ℚ |
61 | | 8nn0 12186 |
. . . . . . . . . . . . 13
⊢ 8 ∈
ℕ0 |
62 | 60, 61 | sselii 3914 |
. . . . . . . . . . . 12
⊢ 8 ∈
ℚ |
63 | 59, 62 | dp2clq 31057 |
. . . . . . . . . . 11
⊢ _48 ∈ ℚ |
64 | 19, 63 | dp2clq 31057 |
. . . . . . . . . 10
⊢ _2_48 ∈ ℚ |
65 | 19, 64 | dp2clq 31057 |
. . . . . . . . 9
⊢ _2_2_48
∈ ℚ |
66 | 59, 65 | dp2clq 31057 |
. . . . . . . 8
⊢ _4_2_2_48
∈ ℚ |
67 | 26, 66 | dp2clq 31057 |
. . . . . . 7
⊢ _0_4_2_2_48
∈ ℚ |
68 | 26, 67 | dp2clq 31057 |
. . . . . 6
⊢ _0_0_4_2_2_48
∈ ℚ |
69 | 26, 68 | dp2clq 31057 |
. . . . 5
⊢ _0_0_0_4_2_2_48
∈ ℚ |
70 | 58, 69 | sselii 3914 |
. . . 4
⊢ _0_0_0_4_2_2_48
∈ ℝ |
71 | | dpcl 31067 |
. . . 4
⊢ ((0
∈ ℕ0 ∧ _0_0_0_4_2_2_48
∈ ℝ) → (0._0_0_0_4_2_2_48)
∈ ℝ) |
72 | 26, 70, 71 | mp2an 688 |
. . 3
⊢ (0._0_0_0_4_2_2_48)
∈ ℝ |
73 | 72 | a1i 11 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → (0._0_0_0_4_2_2_48)
∈ ℝ) |
74 | | 3nn0 12181 |
. . . . . . . . 9
⊢ 3 ∈
ℕ0 |
75 | | 8pos 12015 |
. . . . . . . . . . 11
⊢ 0 <
8 |
76 | | elrp 12661 |
. . . . . . . . . . 11
⊢ (8 ∈
ℝ+ ↔ (8 ∈ ℝ ∧ 0 < 8)) |
77 | 4, 75, 76 | mpbir2an 707 |
. . . . . . . . . 10
⊢ 8 ∈
ℝ+ |
78 | 59, 77 | rpdp2cl 31058 |
. . . . . . . . 9
⊢ _48 ∈
ℝ+ |
79 | 74, 78 | rpdp2cl 31058 |
. . . . . . . 8
⊢ _3_48 ∈ ℝ+ |
80 | 1, 79 | rpdpcl 31079 |
. . . . . . 7
⊢ (7._3_48) ∈ ℝ+ |
81 | | elrp 12661 |
. . . . . . 7
⊢ ((7._3_48) ∈ ℝ+ ↔ ((7._3_48) ∈ ℝ ∧ 0 < (7._3_48))) |
82 | 80, 81 | mpbi 229 |
. . . . . 6
⊢ ((7._3_48) ∈ ℝ ∧ 0 < (7._3_48)) |
83 | 82 | simpri 485 |
. . . . 5
⊢ 0 <
(7._3_48) |
84 | 16, 12, 83 | ltleii 11028 |
. . . 4
⊢ 0 ≤
(7._3_48) |
85 | 84 | a1i 11 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → 0 ≤ (7._3_48)) |
86 | 49 | a1i 11 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → (;10↑;27) ∈ ℝ+) |
87 | | 2cn 11978 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
88 | 87 | mulid2i 10911 |
. . . . . . . . 9
⊢ (1
· 2) = 2 |
89 | | 2nn 11976 |
. . . . . . . . . . 11
⊢ 2 ∈
ℕ |
90 | 89, 1, 27, 31 | declei 12402 |
. . . . . . . . . 10
⊢ 1 ≤
;27 |
91 | | 2pos 12006 |
. . . . . . . . . . 11
⊢ 0 <
2 |
92 | 20 | nn0rei 12174 |
. . . . . . . . . . . 12
⊢ ;27 ∈ ℝ |
93 | | 2re 11977 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
94 | 28, 92, 93 | lemul1i 11827 |
. . . . . . . . . . 11
⊢ (0 < 2
→ (1 ≤ ;27 ↔ (1
· 2) ≤ (;27 ·
2))) |
95 | 91, 94 | ax-mp 5 |
. . . . . . . . . 10
⊢ (1 ≤
;27 ↔ (1 · 2) ≤
(;27 · 2)) |
96 | 90, 95 | mpbi 229 |
. . . . . . . . 9
⊢ (1
· 2) ≤ (;27 ·
2) |
97 | 88, 96 | eqbrtrri 5093 |
. . . . . . . 8
⊢ 2 ≤
(;27 · 2) |
98 | | 1p1e2 12028 |
. . . . . . . . . . 11
⊢ (1 + 1) =
2 |
99 | | loge 25647 |
. . . . . . . . . . . . . 14
⊢
(log‘e) = 1 |
100 | | egt2lt3 15843 |
. . . . . . . . . . . . . . . 16
⊢ (2 < e
∧ e < 3) |
101 | 100 | simpri 485 |
. . . . . . . . . . . . . . 15
⊢ e <
3 |
102 | | epr 15845 |
. . . . . . . . . . . . . . . 16
⊢ e ∈
ℝ+ |
103 | | 3rp 12665 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℝ+ |
104 | | logltb 25660 |
. . . . . . . . . . . . . . . 16
⊢ ((e
∈ ℝ+ ∧ 3 ∈ ℝ+) → (e < 3
↔ (log‘e) < (log‘3))) |
105 | 102, 103,
104 | mp2an 688 |
. . . . . . . . . . . . . . 15
⊢ (e < 3
↔ (log‘e) < (log‘3)) |
106 | 101, 105 | mpbi 229 |
. . . . . . . . . . . . . 14
⊢
(log‘e) < (log‘3) |
107 | 99, 106 | eqbrtrri 5093 |
. . . . . . . . . . . . 13
⊢ 1 <
(log‘3) |
108 | | relogcl 25636 |
. . . . . . . . . . . . . . 15
⊢ (3 ∈
ℝ+ → (log‘3) ∈ ℝ) |
109 | 103, 108 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
(log‘3) ∈ ℝ |
110 | 28, 28, 109, 109 | lt2addi 11467 |
. . . . . . . . . . . . 13
⊢ ((1 <
(log‘3) ∧ 1 < (log‘3)) → (1 + 1) < ((log‘3) +
(log‘3))) |
111 | 107, 107,
110 | mp2an 688 |
. . . . . . . . . . . 12
⊢ (1 + 1)
< ((log‘3) + (log‘3)) |
112 | | 3cn 11984 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
ℂ |
113 | | 3ne0 12009 |
. . . . . . . . . . . . . 14
⊢ 3 ≠
0 |
114 | | logmul2 25676 |
. . . . . . . . . . . . . 14
⊢ ((3
∈ ℂ ∧ 3 ≠ 0 ∧ 3 ∈ ℝ+) →
(log‘(3 · 3)) = ((log‘3) + (log‘3))) |
115 | 112, 113,
103, 114 | mp3an 1459 |
. . . . . . . . . . . . 13
⊢
(log‘(3 · 3)) = ((log‘3) +
(log‘3)) |
116 | | 3t3e9 12070 |
. . . . . . . . . . . . . . 15
⊢ (3
· 3) = 9 |
117 | 116 | fveq2i 6759 |
. . . . . . . . . . . . . 14
⊢
(log‘(3 · 3)) = (log‘9) |
118 | | 9lt10 12497 |
. . . . . . . . . . . . . . . 16
⊢ 9 <
;10 |
119 | 29, 18, 118 | ltleii 11028 |
. . . . . . . . . . . . . . 15
⊢ 9 ≤
;10 |
120 | | 9pos 12016 |
. . . . . . . . . . . . . . . . 17
⊢ 0 <
9 |
121 | | elrp 12661 |
. . . . . . . . . . . . . . . . 17
⊢ (9 ∈
ℝ+ ↔ (9 ∈ ℝ ∧ 0 < 9)) |
122 | 29, 120, 121 | mpbir2an 707 |
. . . . . . . . . . . . . . . 16
⊢ 9 ∈
ℝ+ |
123 | | 10pos 12383 |
. . . . . . . . . . . . . . . . 17
⊢ 0 <
;10 |
124 | | elrp 12661 |
. . . . . . . . . . . . . . . . 17
⊢ (;10 ∈ ℝ+ ↔
(;10 ∈ ℝ ∧ 0 <
;10)) |
125 | 18, 123, 124 | mpbir2an 707 |
. . . . . . . . . . . . . . . 16
⊢ ;10 ∈
ℝ+ |
126 | | logleb 25663 |
. . . . . . . . . . . . . . . 16
⊢ ((9
∈ ℝ+ ∧ ;10 ∈ ℝ+) → (9 ≤ ;10 ↔ (log‘9) ≤
(log‘;10))) |
127 | 122, 125,
126 | mp2an 688 |
. . . . . . . . . . . . . . 15
⊢ (9 ≤
;10 ↔ (log‘9) ≤
(log‘;10)) |
128 | 119, 127 | mpbi 229 |
. . . . . . . . . . . . . 14
⊢
(log‘9) ≤ (log‘;10) |
129 | 117, 128 | eqbrtri 5091 |
. . . . . . . . . . . . 13
⊢
(log‘(3 · 3)) ≤ (log‘;10) |
130 | 115, 129 | eqbrtrri 5093 |
. . . . . . . . . . . 12
⊢
((log‘3) + (log‘3)) ≤ (log‘;10) |
131 | 28, 28 | readdcli 10921 |
. . . . . . . . . . . . 13
⊢ (1 + 1)
∈ ℝ |
132 | 109, 109 | readdcli 10921 |
. . . . . . . . . . . . 13
⊢
((log‘3) + (log‘3)) ∈ ℝ |
133 | | relogcl 25636 |
. . . . . . . . . . . . . 14
⊢ (;10 ∈ ℝ+ →
(log‘;10) ∈
ℝ) |
134 | 125, 133 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(log‘;10) ∈
ℝ |
135 | 131, 132,
134 | ltletri 11033 |
. . . . . . . . . . . 12
⊢ (((1 + 1)
< ((log‘3) + (log‘3)) ∧ ((log‘3) + (log‘3)) ≤
(log‘;10)) → (1 + 1)
< (log‘;10)) |
136 | 111, 130,
135 | mp2an 688 |
. . . . . . . . . . 11
⊢ (1 + 1)
< (log‘;10) |
137 | 98, 136 | eqbrtrri 5093 |
. . . . . . . . . 10
⊢ 2 <
(log‘;10) |
138 | 93, 134 | ltlei 11027 |
. . . . . . . . . 10
⊢ (2 <
(log‘;10) → 2 ≤
(log‘;10)) |
139 | 137, 138 | ax-mp 5 |
. . . . . . . . 9
⊢ 2 ≤
(log‘;10) |
140 | 16, 29, 120 | ltleii 11028 |
. . . . . . . . . . 11
⊢ 0 ≤
9 |
141 | 89, 1, 26, 140 | decltdi 12405 |
. . . . . . . . . 10
⊢ 0 <
;27 |
142 | 93, 134, 92 | lemul2i 11828 |
. . . . . . . . . 10
⊢ (0 <
;27 → (2 ≤
(log‘;10) ↔ (;27 · 2) ≤ (;27 · (log‘;10)))) |
143 | 141, 142 | ax-mp 5 |
. . . . . . . . 9
⊢ (2 ≤
(log‘;10) ↔ (;27 · 2) ≤ (;27 · (log‘;10))) |
144 | 139, 143 | mpbi 229 |
. . . . . . . 8
⊢ (;27 · 2) ≤ (;27 · (log‘;10)) |
145 | 92, 93 | remulcli 10922 |
. . . . . . . . 9
⊢ (;27 · 2) ∈
ℝ |
146 | 20 | nn0zi 12275 |
. . . . . . . . . . 11
⊢ ;27 ∈ ℤ |
147 | | relogexp 25656 |
. . . . . . . . . . 11
⊢ ((;10 ∈ ℝ+ ∧
;27 ∈ ℤ) →
(log‘(;10↑;27)) = (;27 · (log‘;10))) |
148 | 125, 146,
147 | mp2an 688 |
. . . . . . . . . 10
⊢
(log‘(;10↑;27)) = (;27 · (log‘;10)) |
149 | 148, 51 | eqeltrri 2836 |
. . . . . . . . 9
⊢ (;27 · (log‘;10)) ∈ ℝ |
150 | 93, 145, 149 | letri 11034 |
. . . . . . . 8
⊢ ((2 ≤
(;27 · 2) ∧ (;27 · 2) ≤ (;27 · (log‘;10))) → 2 ≤ (;27 · (log‘;10))) |
151 | 97, 144, 150 | mp2an 688 |
. . . . . . 7
⊢ 2 ≤
(;27 · (log‘;10)) |
152 | | relogef 25643 |
. . . . . . . 8
⊢ (2 ∈
ℝ → (log‘(exp‘2)) = 2) |
153 | 93, 152 | ax-mp 5 |
. . . . . . 7
⊢
(log‘(exp‘2)) = 2 |
154 | 151, 153,
148 | 3brtr4i 5100 |
. . . . . 6
⊢
(log‘(exp‘2)) ≤ (log‘(;10↑;27)) |
155 | | rpefcl 15741 |
. . . . . . . 8
⊢ (2 ∈
ℝ → (exp‘2) ∈ ℝ+) |
156 | 93, 155 | ax-mp 5 |
. . . . . . 7
⊢
(exp‘2) ∈ ℝ+ |
157 | | logleb 25663 |
. . . . . . 7
⊢
(((exp‘2) ∈ ℝ+ ∧ (;10↑;27) ∈ ℝ+) →
((exp‘2) ≤ (;10↑;27) ↔ (log‘(exp‘2)) ≤
(log‘(;10↑;27)))) |
158 | 156, 49, 157 | mp2an 688 |
. . . . . 6
⊢
((exp‘2) ≤ (;10↑;27) ↔ (log‘(exp‘2)) ≤
(log‘(;10↑;27))) |
159 | 154, 158 | mpbir 230 |
. . . . 5
⊢
(exp‘2) ≤ (;10↑;27) |
160 | 159 | a1i 11 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → (exp‘2) ≤ (;10↑;27)) |
161 | 86, 40, 160, 38 | logdivsqrle 32530 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → ((log‘𝑁) / (√‘𝑁)) ≤ ((log‘(;10↑;27)) / (√‘(;10↑;27)))) |
162 | 46, 56, 13, 85, 161 | lemul2ad 11845 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → ((7._3_48)
· ((log‘𝑁) /
(√‘𝑁))) ≤
((7._3_48) · ((log‘(;10↑;27)) / (√‘(;10↑;27))))) |
163 | | 3lt10 12503 |
. . . . . . . 8
⊢ 3 <
;10 |
164 | | 4lt10 12502 |
. . . . . . . . 9
⊢ 4 <
;10 |
165 | | 8lt10 12498 |
. . . . . . . . 9
⊢ 8 <
;10 |
166 | 59, 77, 164, 165 | dp2lt10 31060 |
. . . . . . . 8
⊢ _48 < ;10 |
167 | 74, 78, 163, 166 | dp2lt10 31060 |
. . . . . . 7
⊢ _3_48 < ;10 |
168 | | 7p1e8 12052 |
. . . . . . 7
⊢ (7 + 1) =
8 |
169 | 1, 79, 61, 167, 168 | dplti 31081 |
. . . . . 6
⊢ (7._3_48) < 8 |
170 | 58, 62 | sselii 3914 |
. . . . . . 7
⊢ 8 ∈
ℝ |
171 | 12, 170, 18 | lttri 11031 |
. . . . . 6
⊢
(((7._3_48) < 8 ∧ 8 < ;10) → (7._3_48)
< ;10) |
172 | 169, 165,
171 | mp2an 688 |
. . . . 5
⊢ (7._3_48) < ;10 |
173 | 27, 26 | deccl 12381 |
. . . . . . . . . 10
⊢ ;10 ∈
ℕ0 |
174 | 173 | numexp0 16705 |
. . . . . . . . 9
⊢ (;10↑0) = 1 |
175 | | 0z 12260 |
. . . . . . . . . . 11
⊢ 0 ∈
ℤ |
176 | 18, 175, 146 | 3pm3.2i 1337 |
. . . . . . . . . 10
⊢ (;10 ∈ ℝ ∧ 0 ∈
ℤ ∧ ;27 ∈
ℤ) |
177 | | 1lt10 12505 |
. . . . . . . . . . 11
⊢ 1 <
;10 |
178 | 177, 141 | pm3.2i 470 |
. . . . . . . . . 10
⊢ (1 <
;10 ∧ 0 < ;27) |
179 | | ltexp2a 13812 |
. . . . . . . . . 10
⊢ (((;10 ∈ ℝ ∧ 0 ∈
ℤ ∧ ;27 ∈ ℤ)
∧ (1 < ;10 ∧ 0 <
;27)) → (;10↑0) < (;10↑;27)) |
180 | 176, 178,
179 | mp2an 688 |
. . . . . . . . 9
⊢ (;10↑0) < (;10↑;27) |
181 | 174, 180 | eqbrtrri 5093 |
. . . . . . . 8
⊢ 1 <
(;10↑;27) |
182 | | loggt0b 25692 |
. . . . . . . . 9
⊢ ((;10↑;27) ∈ ℝ+ → (0 <
(log‘(;10↑;27)) ↔ 1 < (;10↑;27))) |
183 | 49, 182 | ax-mp 5 |
. . . . . . . 8
⊢ (0 <
(log‘(;10↑;27)) ↔ 1 < (;10↑;27)) |
184 | 181, 183 | mpbir 230 |
. . . . . . 7
⊢ 0 <
(log‘(;10↑;27)) |
185 | 51, 52 | divgt0i 11813 |
. . . . . . 7
⊢ ((0 <
(log‘(;10↑;27)) ∧ 0 < (√‘(;10↑;27))) → 0 < ((log‘(;10↑;27)) / (√‘(;10↑;27)))) |
186 | 184, 53, 185 | mp2an 688 |
. . . . . 6
⊢ 0 <
((log‘(;10↑;27)) / (√‘(;10↑;27))) |
187 | 12, 18, 55 | ltmul1i 11823 |
. . . . . 6
⊢ (0 <
((log‘(;10↑;27)) / (√‘(;10↑;27))) → ((7._3_48)
< ;10 ↔ ((7._3_48) · ((log‘(;10↑;27)) / (√‘(;10↑;27)))) < (;10 · ((log‘(;10↑;27)) / (√‘(;10↑;27)))))) |
188 | 186, 187 | ax-mp 5 |
. . . . 5
⊢ ((7._3_48) < ;10 ↔ ((7._3_48)
· ((log‘(;10↑;27)) / (√‘(;10↑;27)))) < (;10 · ((log‘(;10↑;27)) / (√‘(;10↑;27))))) |
189 | 172, 188 | mpbi 229 |
. . . 4
⊢ ((7._3_48) · ((log‘(;10↑;27)) / (√‘(;10↑;27)))) < (;10 · ((log‘(;10↑;27)) / (√‘(;10↑;27)))) |
190 | 18 | recni 10920 |
. . . . . . . . . . . . 13
⊢ ;10 ∈ ℂ |
191 | | expmul 13756 |
. . . . . . . . . . . . 13
⊢ ((;10 ∈ ℂ ∧ 7 ∈
ℕ0 ∧ 2 ∈ ℕ0) → (;10↑(7 · 2)) = ((;10↑7)↑2)) |
192 | 190, 1, 19, 191 | mp3an 1459 |
. . . . . . . . . . . 12
⊢ (;10↑(7 · 2)) = ((;10↑7)↑2) |
193 | | 7t2e14 12475 |
. . . . . . . . . . . . 13
⊢ (7
· 2) = ;14 |
194 | 193 | oveq2i 7266 |
. . . . . . . . . . . 12
⊢ (;10↑(7 · 2)) = (;10↑;14) |
195 | 192, 194 | eqtr3i 2768 |
. . . . . . . . . . 11
⊢ ((;10↑7)↑2) = (;10↑;14) |
196 | 195 | fveq2i 6759 |
. . . . . . . . . 10
⊢
(√‘((;10↑7)↑2)) = (√‘(;10↑;14)) |
197 | | reexpcl 13727 |
. . . . . . . . . . . 12
⊢ ((;10 ∈ ℝ ∧ 7 ∈
ℕ0) → (;10↑7) ∈ ℝ) |
198 | 18, 1, 197 | mp2an 688 |
. . . . . . . . . . 11
⊢ (;10↑7) ∈
ℝ |
199 | 1 | nn0zi 12275 |
. . . . . . . . . . . . 13
⊢ 7 ∈
ℤ |
200 | | expgt0 13744 |
. . . . . . . . . . . . 13
⊢ ((;10 ∈ ℝ ∧ 7 ∈
ℤ ∧ 0 < ;10) → 0
< (;10↑7)) |
201 | 18, 199, 123, 200 | mp3an 1459 |
. . . . . . . . . . . 12
⊢ 0 <
(;10↑7) |
202 | 16, 198, 201 | ltleii 11028 |
. . . . . . . . . . 11
⊢ 0 ≤
(;10↑7) |
203 | | sqrtsq 14909 |
. . . . . . . . . . 11
⊢ (((;10↑7) ∈ ℝ ∧ 0 ≤
(;10↑7)) →
(√‘((;10↑7)↑2)) = (;10↑7)) |
204 | 198, 202,
203 | mp2an 688 |
. . . . . . . . . 10
⊢
(√‘((;10↑7)↑2)) = (;10↑7) |
205 | 196, 204 | eqtr3i 2768 |
. . . . . . . . 9
⊢
(√‘(;10↑;14)) = (;10↑7) |
206 | 27, 59 | deccl 12381 |
. . . . . . . . . . . . 13
⊢ ;14 ∈
ℕ0 |
207 | 206 | nn0zi 12275 |
. . . . . . . . . . . 12
⊢ ;14 ∈ ℤ |
208 | 18, 207, 146 | 3pm3.2i 1337 |
. . . . . . . . . . 11
⊢ (;10 ∈ ℝ ∧ ;14 ∈ ℤ ∧ ;27 ∈ ℤ) |
209 | | 1lt2 12074 |
. . . . . . . . . . . . 13
⊢ 1 <
2 |
210 | 27, 19, 59, 1, 164, 209 | decltc 12395 |
. . . . . . . . . . . 12
⊢ ;14 < ;27 |
211 | 177, 210 | pm3.2i 470 |
. . . . . . . . . . 11
⊢ (1 <
;10 ∧ ;14 < ;27) |
212 | | ltexp2a 13812 |
. . . . . . . . . . 11
⊢ (((;10 ∈ ℝ ∧ ;14 ∈ ℤ ∧ ;27 ∈ ℤ) ∧ (1 < ;10 ∧ ;14 < ;27)) → (;10↑;14) < (;10↑;27)) |
213 | 208, 211,
212 | mp2an 688 |
. . . . . . . . . 10
⊢ (;10↑;14) < (;10↑;27) |
214 | | reexpcl 13727 |
. . . . . . . . . . . . 13
⊢ ((;10 ∈ ℝ ∧ ;14 ∈ ℕ0) →
(;10↑;14) ∈ ℝ) |
215 | 18, 206, 214 | mp2an 688 |
. . . . . . . . . . . 12
⊢ (;10↑;14) ∈ ℝ |
216 | | expgt0 13744 |
. . . . . . . . . . . . . 14
⊢ ((;10 ∈ ℝ ∧ ;14 ∈ ℤ ∧ 0 < ;10) → 0 < (;10↑;14)) |
217 | 18, 207, 123, 216 | mp3an 1459 |
. . . . . . . . . . . . 13
⊢ 0 <
(;10↑;14) |
218 | 16, 215, 217 | ltleii 11028 |
. . . . . . . . . . . 12
⊢ 0 ≤
(;10↑;14) |
219 | 215, 218 | pm3.2i 470 |
. . . . . . . . . . 11
⊢ ((;10↑;14) ∈ ℝ ∧ 0 ≤ (;10↑;14)) |
220 | 16, 22, 36 | ltleii 11028 |
. . . . . . . . . . . 12
⊢ 0 ≤
(;10↑;27) |
221 | 22, 220 | pm3.2i 470 |
. . . . . . . . . . 11
⊢ ((;10↑;27) ∈ ℝ ∧ 0 ≤ (;10↑;27)) |
222 | | sqrtlt 14901 |
. . . . . . . . . . 11
⊢ ((((;10↑;14) ∈ ℝ ∧ 0 ≤ (;10↑;14)) ∧ ((;10↑;27) ∈ ℝ ∧ 0 ≤ (;10↑;27))) → ((;10↑;14) < (;10↑;27) ↔ (√‘(;10↑;14)) < (√‘(;10↑;27)))) |
223 | 219, 221,
222 | mp2an 688 |
. . . . . . . . . 10
⊢ ((;10↑;14) < (;10↑;27) ↔ (√‘(;10↑;14)) < (√‘(;10↑;27))) |
224 | 213, 223 | mpbi 229 |
. . . . . . . . 9
⊢
(√‘(;10↑;14)) < (√‘(;10↑;27)) |
225 | 205, 224 | eqbrtrri 5093 |
. . . . . . . 8
⊢ (;10↑7) < (√‘(;10↑;27)) |
226 | 198, 201 | pm3.2i 470 |
. . . . . . . . 9
⊢ ((;10↑7) ∈ ℝ ∧ 0 <
(;10↑7)) |
227 | 52, 53 | pm3.2i 470 |
. . . . . . . . 9
⊢
((√‘(;10↑;27)) ∈ ℝ ∧ 0 <
(√‘(;10↑;27))) |
228 | 51, 184 | pm3.2i 470 |
. . . . . . . . 9
⊢
((log‘(;10↑;27)) ∈ ℝ ∧ 0 <
(log‘(;10↑;27))) |
229 | | ltdiv2 11791 |
. . . . . . . . 9
⊢ ((((;10↑7) ∈ ℝ ∧ 0 <
(;10↑7)) ∧
((√‘(;10↑;27)) ∈ ℝ ∧ 0 <
(√‘(;10↑;27))) ∧ ((log‘(;10↑;27)) ∈ ℝ ∧ 0 < (log‘(;10↑;27)))) → ((;10↑7) < (√‘(;10↑;27)) ↔ ((log‘(;10↑;27)) / (√‘(;10↑;27))) < ((log‘(;10↑;27)) / (;10↑7)))) |
230 | 226, 227,
228, 229 | mp3an 1459 |
. . . . . . . 8
⊢ ((;10↑7) < (√‘(;10↑;27)) ↔ ((log‘(;10↑;27)) / (√‘(;10↑;27))) < ((log‘(;10↑;27)) / (;10↑7))) |
231 | 225, 230 | mpbi 229 |
. . . . . . 7
⊢
((log‘(;10↑;27)) / (√‘(;10↑;27))) < ((log‘(;10↑;27)) / (;10↑7)) |
232 | | 6nn 11992 |
. . . . . . . . . . . . . 14
⊢ 6 ∈
ℕ |
233 | 232 | nngt0i 11942 |
. . . . . . . . . . . . . 14
⊢ 0 <
6 |
234 | 27, 26, 232, 233 | declt 12394 |
. . . . . . . . . . . . 13
⊢ ;10 < ;16 |
235 | | 6nn0 12184 |
. . . . . . . . . . . . . . . . 17
⊢ 6 ∈
ℕ0 |
236 | 27, 235 | deccl 12381 |
. . . . . . . . . . . . . . . 16
⊢ ;16 ∈
ℕ0 |
237 | 236 | nn0rei 12174 |
. . . . . . . . . . . . . . 15
⊢ ;16 ∈ ℝ |
238 | 25, 235, 26, 123 | declti 12404 |
. . . . . . . . . . . . . . 15
⊢ 0 <
;16 |
239 | | elrp 12661 |
. . . . . . . . . . . . . . 15
⊢ (;16 ∈ ℝ+ ↔
(;16 ∈ ℝ ∧ 0 <
;16)) |
240 | 237, 238,
239 | mpbir2an 707 |
. . . . . . . . . . . . . 14
⊢ ;16 ∈
ℝ+ |
241 | | logltb 25660 |
. . . . . . . . . . . . . 14
⊢ ((;10 ∈ ℝ+ ∧
;16 ∈ ℝ+)
→ (;10 < ;16 ↔ (log‘;10) < (log‘;16))) |
242 | 125, 240,
241 | mp2an 688 |
. . . . . . . . . . . . 13
⊢ (;10 < ;16 ↔ (log‘;10) < (log‘;16)) |
243 | 234, 242 | mpbi 229 |
. . . . . . . . . . . 12
⊢
(log‘;10) <
(log‘;16) |
244 | | 2exp4 16714 |
. . . . . . . . . . . . . 14
⊢
(2↑4) = ;16 |
245 | 244 | fveq2i 6759 |
. . . . . . . . . . . . 13
⊢
(log‘(2↑4)) = (log‘;16) |
246 | | 2rp 12664 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℝ+ |
247 | 59 | nn0zi 12275 |
. . . . . . . . . . . . . 14
⊢ 4 ∈
ℤ |
248 | | relogexp 25656 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℝ+ ∧ 4 ∈ ℤ) →
(log‘(2↑4)) = (4 · (log‘2))) |
249 | 246, 247,
248 | mp2an 688 |
. . . . . . . . . . . . 13
⊢
(log‘(2↑4)) = (4 · (log‘2)) |
250 | 245, 249 | eqtr3i 2768 |
. . . . . . . . . . . 12
⊢
(log‘;16) = (4
· (log‘2)) |
251 | 243, 250 | breqtri 5095 |
. . . . . . . . . . 11
⊢
(log‘;10) < (4
· (log‘2)) |
252 | 100 | simpli 483 |
. . . . . . . . . . . . . . 15
⊢ 2 <
e |
253 | | logltb 25660 |
. . . . . . . . . . . . . . . 16
⊢ ((2
∈ ℝ+ ∧ e ∈ ℝ+) → (2 < e
↔ (log‘2) < (log‘e))) |
254 | 246, 102,
253 | mp2an 688 |
. . . . . . . . . . . . . . 15
⊢ (2 < e
↔ (log‘2) < (log‘e)) |
255 | 252, 254 | mpbi 229 |
. . . . . . . . . . . . . 14
⊢
(log‘2) < (log‘e) |
256 | 255, 99 | breqtri 5095 |
. . . . . . . . . . . . 13
⊢
(log‘2) < 1 |
257 | | 4pos 12010 |
. . . . . . . . . . . . . 14
⊢ 0 <
4 |
258 | | relogcl 25636 |
. . . . . . . . . . . . . . . 16
⊢ (2 ∈
ℝ+ → (log‘2) ∈ ℝ) |
259 | 246, 258 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
(log‘2) ∈ ℝ |
260 | 259, 28, 3 | ltmul2i 11826 |
. . . . . . . . . . . . . 14
⊢ (0 < 4
→ ((log‘2) < 1 ↔ (4 · (log‘2)) < (4 ·
1))) |
261 | 257, 260 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
((log‘2) < 1 ↔ (4 · (log‘2)) < (4 ·
1)) |
262 | 256, 261 | mpbi 229 |
. . . . . . . . . . . 12
⊢ (4
· (log‘2)) < (4 · 1) |
263 | | 4cn 11988 |
. . . . . . . . . . . . 13
⊢ 4 ∈
ℂ |
264 | 263 | mulid1i 10910 |
. . . . . . . . . . . 12
⊢ (4
· 1) = 4 |
265 | 262, 264 | breqtri 5095 |
. . . . . . . . . . 11
⊢ (4
· (log‘2)) < 4 |
266 | 3, 259 | remulcli 10922 |
. . . . . . . . . . . 12
⊢ (4
· (log‘2)) ∈ ℝ |
267 | 134, 266,
3 | lttri 11031 |
. . . . . . . . . . 11
⊢
(((log‘;10) < (4
· (log‘2)) ∧ (4 · (log‘2)) < 4) →
(log‘;10) <
4) |
268 | 251, 265,
267 | mp2an 688 |
. . . . . . . . . 10
⊢
(log‘;10) <
4 |
269 | 134, 3, 92 | ltmul2i 11826 |
. . . . . . . . . . 11
⊢ (0 <
;27 → ((log‘;10) < 4 ↔ (;27 · (log‘;10)) < (;27 · 4))) |
270 | 141, 269 | ax-mp 5 |
. . . . . . . . . 10
⊢
((log‘;10) < 4
↔ (;27 ·
(log‘;10)) < (;27 · 4)) |
271 | 268, 270 | mpbi 229 |
. . . . . . . . 9
⊢ (;27 · (log‘;10)) < (;27 · 4) |
272 | 148, 271 | eqbrtri 5091 |
. . . . . . . 8
⊢
(log‘(;10↑;27)) < (;27 · 4) |
273 | 92, 3 | remulcli 10922 |
. . . . . . . . . 10
⊢ (;27 · 4) ∈
ℝ |
274 | 51, 273, 198 | ltdiv1i 11824 |
. . . . . . . . 9
⊢ (0 <
(;10↑7) →
((log‘(;10↑;27)) < (;27 · 4) ↔ ((log‘(;10↑;27)) / (;10↑7)) < ((;27 · 4) / (;10↑7)))) |
275 | 201, 274 | ax-mp 5 |
. . . . . . . 8
⊢
((log‘(;10↑;27)) < (;27 · 4) ↔ ((log‘(;10↑;27)) / (;10↑7)) < ((;27 · 4) / (;10↑7))) |
276 | 272, 275 | mpbi 229 |
. . . . . . 7
⊢
((log‘(;10↑;27)) / (;10↑7)) < ((;27 · 4) / (;10↑7)) |
277 | 16, 201 | gtneii 11017 |
. . . . . . . . 9
⊢ (;10↑7) ≠ 0 |
278 | 51, 198, 277 | redivcli 11672 |
. . . . . . . 8
⊢
((log‘(;10↑;27)) / (;10↑7)) ∈ ℝ |
279 | 273, 198,
277 | redivcli 11672 |
. . . . . . . 8
⊢ ((;27 · 4) / (;10↑7)) ∈ ℝ |
280 | 55, 278, 279 | lttri 11031 |
. . . . . . 7
⊢
((((log‘(;10↑;27)) / (√‘(;10↑;27))) < ((log‘(;10↑;27)) / (;10↑7)) ∧ ((log‘(;10↑;27)) / (;10↑7)) < ((;27 · 4) / (;10↑7))) → ((log‘(;10↑;27)) / (√‘(;10↑;27))) < ((;27 · 4) / (;10↑7))) |
281 | 231, 276,
280 | mp2an 688 |
. . . . . 6
⊢
((log‘(;10↑;27)) / (√‘(;10↑;27))) < ((;27 · 4) / (;10↑7)) |
282 | | 7lt10 12499 |
. . . . . . . . . 10
⊢ 7 <
;10 |
283 | | 2lt10 12504 |
. . . . . . . . . 10
⊢ 2 <
;10 |
284 | 19, 173, 1, 26, 282, 283 | decltc 12395 |
. . . . . . . . 9
⊢ ;27 < ;;100 |
285 | | 10nn 12382 |
. . . . . . . . . . . . 13
⊢ ;10 ∈ ℕ |
286 | 285 | decnncl2 12390 |
. . . . . . . . . . . 12
⊢ ;;100 ∈ ℕ |
287 | 286 | nnrei 11912 |
. . . . . . . . . . 11
⊢ ;;100 ∈ ℝ |
288 | 92, 287, 3 | ltmul1i 11823 |
. . . . . . . . . 10
⊢ (0 < 4
→ (;27 < ;;100 ↔ (;27 · 4) < (;;100
· 4))) |
289 | 257, 288 | ax-mp 5 |
. . . . . . . . 9
⊢ (;27 < ;;100
↔ (;27 · 4) <
(;;100 · 4)) |
290 | 284, 289 | mpbi 229 |
. . . . . . . 8
⊢ (;27 · 4) < (;;100
· 4) |
291 | 287, 3 | remulcli 10922 |
. . . . . . . . . 10
⊢ (;;100 · 4) ∈ ℝ |
292 | 273, 291,
198 | ltdiv1i 11824 |
. . . . . . . . 9
⊢ (0 <
(;10↑7) → ((;27 · 4) < (;;100
· 4) ↔ ((;27 ·
4) / (;10↑7)) < ((;;100 · 4) / (;10↑7)))) |
293 | 201, 292 | ax-mp 5 |
. . . . . . . 8
⊢ ((;27 · 4) < (;;100
· 4) ↔ ((;27 ·
4) / (;10↑7)) < ((;;100 · 4) / (;10↑7))) |
294 | 290, 293 | mpbi 229 |
. . . . . . 7
⊢ ((;27 · 4) / (;10↑7)) < ((;;100
· 4) / (;10↑7)) |
295 | | 8nn 11998 |
. . . . . . . . . . . . . . 15
⊢ 8 ∈
ℕ |
296 | | nnrp 12670 |
. . . . . . . . . . . . . . 15
⊢ (8 ∈
ℕ → 8 ∈ ℝ+) |
297 | 295, 296 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ 8 ∈
ℝ+ |
298 | 59, 297 | rpdp2cl 31058 |
. . . . . . . . . . . . 13
⊢ _48 ∈
ℝ+ |
299 | 19, 298 | rpdp2cl 31058 |
. . . . . . . . . . . 12
⊢ _2_48 ∈ ℝ+ |
300 | 19, 299 | rpdp2cl 31058 |
. . . . . . . . . . 11
⊢ _2_2_48
∈ ℝ+ |
301 | 59, 300 | dpgti 31082 |
. . . . . . . . . 10
⊢ 4 <
(4._2_2_48) |
302 | 72 | recni 10920 |
. . . . . . . . . . . . 13
⊢ (0._0_0_0_4_2_2_48)
∈ ℂ |
303 | 198 | recni 10920 |
. . . . . . . . . . . . 13
⊢ (;10↑7) ∈
ℂ |
304 | 302, 303 | mulcli 10913 |
. . . . . . . . . . . 12
⊢ ((0._0_0_0_4_2_2_48)
· (;10↑7)) ∈
ℂ |
305 | 16, 123 | gtneii 11017 |
. . . . . . . . . . . . 13
⊢ ;10 ≠ 0 |
306 | 190, 305 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ (;10 ∈ ℂ ∧ ;10 ≠ 0) |
307 | 287 | recni 10920 |
. . . . . . . . . . . . 13
⊢ ;;100 ∈ ℂ |
308 | 286 | nnne0i 11943 |
. . . . . . . . . . . . 13
⊢ ;;100 ≠ 0 |
309 | 307, 308 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ (;;100 ∈ ℂ ∧ ;;100
≠ 0) |
310 | | divdiv1 11616 |
. . . . . . . . . . . 12
⊢
((((0._0_0_0_4_2_2_48)
· (;10↑7)) ∈
ℂ ∧ (;10 ∈ ℂ
∧ ;10 ≠ 0) ∧ (;;100 ∈ ℂ ∧ ;;100
≠ 0)) → ((((0._0_0_0_4_2_2_48)
· (;10↑7)) / ;10) / ;;100) =
(((0._0_0_0_4_2_2_48)
· (;10↑7)) / (;10 · ;;100))) |
311 | 304, 306,
309, 310 | mp3an 1459 |
. . . . . . . . . . 11
⊢
((((0._0_0_0_4_2_2_48)
· (;10↑7)) / ;10) / ;;100) =
(((0._0_0_0_4_2_2_48)
· (;10↑7)) / (;10 · ;;100)) |
312 | 302, 303,
190, 305 | div23i 11663 |
. . . . . . . . . . . 12
⊢
(((0._0_0_0_4_2_2_48)
· (;10↑7)) / ;10) = (((0._0_0_0_4_2_2_48) /
;10) · (;10↑7)) |
313 | 312 | oveq1i 7265 |
. . . . . . . . . . 11
⊢
((((0._0_0_0_4_2_2_48)
· (;10↑7)) / ;10) / ;;100) =
((((0._0_0_0_4_2_2_48) /
;10) · (;10↑7)) / ;;100) |
314 | 190, 307 | mulcli 10913 |
. . . . . . . . . . . . 13
⊢ (;10 · ;;100)
∈ ℂ |
315 | 190, 307,
305, 308 | mulne0i 11548 |
. . . . . . . . . . . . 13
⊢ (;10 · ;;100)
≠ 0 |
316 | 302, 303,
314, 315 | divassi 11661 |
. . . . . . . . . . . 12
⊢
(((0._0_0_0_4_2_2_48)
· (;10↑7)) / (;10 · ;;100))
= ((0._0_0_0_4_2_2_48)
· ((;10↑7) / (;10 · ;;100))) |
317 | | expp1 13717 |
. . . . . . . . . . . . . . . . . 18
⊢ ((;10 ∈ ℂ ∧ 2 ∈
ℕ0) → (;10↑(2 + 1)) = ((;10↑2) · ;10)) |
318 | 190, 19, 317 | mp2an 688 |
. . . . . . . . . . . . . . . . 17
⊢ (;10↑(2 + 1)) = ((;10↑2) · ;10) |
319 | | sq10 13906 |
. . . . . . . . . . . . . . . . . 18
⊢ (;10↑2) = ;;100 |
320 | 319 | oveq1i 7265 |
. . . . . . . . . . . . . . . . 17
⊢ ((;10↑2) · ;10) = (;;100
· ;10) |
321 | 307, 190 | mulcomi 10914 |
. . . . . . . . . . . . . . . . 17
⊢ (;;100 · ;10) = (;10 · ;;100) |
322 | 318, 320,
321 | 3eqtrri 2771 |
. . . . . . . . . . . . . . . 16
⊢ (;10 · ;;100) =
(;10↑(2 +
1)) |
323 | | 2p1e3 12045 |
. . . . . . . . . . . . . . . . 17
⊢ (2 + 1) =
3 |
324 | 323 | oveq2i 7266 |
. . . . . . . . . . . . . . . 16
⊢ (;10↑(2 + 1)) = (;10↑3) |
325 | 322, 324 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢ (;10 · ;;100) =
(;10↑3) |
326 | 325 | oveq2i 7266 |
. . . . . . . . . . . . . 14
⊢ ((;10↑7) / (;10 · ;;100))
= ((;10↑7) / (;10↑3)) |
327 | 74 | nn0zi 12275 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℤ |
328 | 199, 327 | pm3.2i 470 |
. . . . . . . . . . . . . . 15
⊢ (7 ∈
ℤ ∧ 3 ∈ ℤ) |
329 | | expsub 13759 |
. . . . . . . . . . . . . . 15
⊢ (((;10 ∈ ℂ ∧ ;10 ≠ 0) ∧ (7 ∈ ℤ
∧ 3 ∈ ℤ)) → (;10↑(7 − 3)) = ((;10↑7) / (;10↑3))) |
330 | 306, 328,
329 | mp2an 688 |
. . . . . . . . . . . . . 14
⊢ (;10↑(7 − 3)) = ((;10↑7) / (;10↑3)) |
331 | | 7cn 11997 |
. . . . . . . . . . . . . . . 16
⊢ 7 ∈
ℂ |
332 | | 4p3e7 12057 |
. . . . . . . . . . . . . . . . 17
⊢ (4 + 3) =
7 |
333 | 263, 112,
332 | addcomli 11097 |
. . . . . . . . . . . . . . . 16
⊢ (3 + 4) =
7 |
334 | 331, 112,
263, 333 | subaddrii 11240 |
. . . . . . . . . . . . . . 15
⊢ (7
− 3) = 4 |
335 | 334 | oveq2i 7266 |
. . . . . . . . . . . . . 14
⊢ (;10↑(7 − 3)) = (;10↑4) |
336 | 326, 330,
335 | 3eqtr2i 2772 |
. . . . . . . . . . . . 13
⊢ ((;10↑7) / (;10 · ;;100))
= (;10↑4) |
337 | 336 | oveq2i 7266 |
. . . . . . . . . . . 12
⊢ ((0._0_0_0_4_2_2_48)
· ((;10↑7) / (;10 · ;;100)))
= ((0._0_0_0_4_2_2_48)
· (;10↑4)) |
338 | 173 | numexp1 16706 |
. . . . . . . . . . . . . 14
⊢ (;10↑1) = ;10 |
339 | 338 | oveq2i 7266 |
. . . . . . . . . . . . 13
⊢ ((0._4_2_2_48)
· (;10↑1)) = ((0._4_2_2_48)
· ;10) |
340 | 59, 300 | rpdp2cl 31058 |
. . . . . . . . . . . . . . 15
⊢ _4_2_2_48
∈ ℝ+ |
341 | 25 | nnzi 12274 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℤ |
342 | 89 | nnzi 12274 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℤ |
343 | 26, 340, 98, 341, 342 | dpexpp1 31084 |
. . . . . . . . . . . . . 14
⊢ ((0._4_2_2_48)
· (;10↑1)) = ((0._0_4_2_2_48)
· (;10↑2)) |
344 | 26, 340 | rpdp2cl 31058 |
. . . . . . . . . . . . . . 15
⊢ _0_4_2_2_48
∈ ℝ+ |
345 | 26, 344, 323, 342, 327 | dpexpp1 31084 |
. . . . . . . . . . . . . 14
⊢ ((0._0_4_2_2_48)
· (;10↑2)) = ((0._0_0_4_2_2_48)
· (;10↑3)) |
346 | 26, 344 | rpdp2cl 31058 |
. . . . . . . . . . . . . . 15
⊢ _0_0_4_2_2_48
∈ ℝ+ |
347 | | 3p1e4 12048 |
. . . . . . . . . . . . . . 15
⊢ (3 + 1) =
4 |
348 | 26, 346, 347, 327, 247 | dpexpp1 31084 |
. . . . . . . . . . . . . 14
⊢ ((0._0_0_4_2_2_48)
· (;10↑3)) = ((0._0_0_0_4_2_2_48)
· (;10↑4)) |
349 | 343, 345,
348 | 3eqtri 2770 |
. . . . . . . . . . . . 13
⊢ ((0._4_2_2_48)
· (;10↑1)) = ((0._0_0_0_4_2_2_48)
· (;10↑4)) |
350 | 59, 300 | 0dp2dp 31085 |
. . . . . . . . . . . . 13
⊢ ((0._4_2_2_48)
· ;10) = (4._2_2_48) |
351 | 339, 349,
350 | 3eqtr3i 2774 |
. . . . . . . . . . . 12
⊢ ((0._0_0_0_4_2_2_48)
· (;10↑4)) = (4._2_2_48) |
352 | 316, 337,
351 | 3eqtri 2770 |
. . . . . . . . . . 11
⊢
(((0._0_0_0_4_2_2_48)
· (;10↑7)) / (;10 · ;;100))
= (4._2_2_48) |
353 | 311, 313,
352 | 3eqtr3i 2774 |
. . . . . . . . . 10
⊢
((((0._0_0_0_4_2_2_48) /
;10) · (;10↑7)) / ;;100) =
(4._2_2_48) |
354 | 301, 353 | breqtrri 5097 |
. . . . . . . . 9
⊢ 4 <
((((0._0_0_0_4_2_2_48) /
;10) · (;10↑7)) / ;;100) |
355 | 72, 18, 305 | redivcli 11672 |
. . . . . . . . . . 11
⊢ ((0._0_0_0_4_2_2_48) /
;10) ∈
ℝ |
356 | 355, 198 | remulcli 10922 |
. . . . . . . . . 10
⊢
(((0._0_0_0_4_2_2_48) /
;10) · (;10↑7)) ∈ ℝ |
357 | 286 | nngt0i 11942 |
. . . . . . . . . . 11
⊢ 0 <
;;100 |
358 | 287, 357 | pm3.2i 470 |
. . . . . . . . . 10
⊢ (;;100 ∈ ℝ ∧ 0 < ;;100) |
359 | | ltmuldiv2 11779 |
. . . . . . . . . 10
⊢ ((4
∈ ℝ ∧ (((0._0_0_0_4_2_2_48) /
;10) · (;10↑7)) ∈ ℝ ∧ (;;100
∈ ℝ ∧ 0 < ;;100)) → ((;;100
· 4) < (((0._0_0_0_4_2_2_48) /
;10) · (;10↑7)) ↔ 4 < ((((0._0_0_0_4_2_2_48) /
;10) · (;10↑7)) / ;;100))) |
360 | 3, 356, 358, 359 | mp3an 1459 |
. . . . . . . . 9
⊢ ((;;100 · 4) < (((0._0_0_0_4_2_2_48) /
;10) · (;10↑7)) ↔ 4 < ((((0._0_0_0_4_2_2_48) /
;10) · (;10↑7)) / ;;100)) |
361 | 354, 360 | mpbir 230 |
. . . . . . . 8
⊢ (;;100 · 4) < (((0._0_0_0_4_2_2_48) /
;10) · (;10↑7)) |
362 | | ltdivmul2 11782 |
. . . . . . . . 9
⊢ (((;;100 · 4) ∈ ℝ ∧ ((0._0_0_0_4_2_2_48) /
;10) ∈ ℝ ∧ ((;10↑7) ∈ ℝ ∧ 0 <
(;10↑7))) → (((;;100 · 4) / (;10↑7)) < ((0._0_0_0_4_2_2_48) /
;10) ↔ (;;100
· 4) < (((0._0_0_0_4_2_2_48) /
;10) · (;10↑7)))) |
363 | 291, 355,
226, 362 | mp3an 1459 |
. . . . . . . 8
⊢ (((;;100 · 4) / (;10↑7)) < ((0._0_0_0_4_2_2_48) /
;10) ↔ (;;100
· 4) < (((0._0_0_0_4_2_2_48) /
;10) · (;10↑7))) |
364 | 361, 363 | mpbir 230 |
. . . . . . 7
⊢ ((;;100 · 4) / (;10↑7)) < ((0._0_0_0_4_2_2_48) /
;10) |
365 | 291, 198,
277 | redivcli 11672 |
. . . . . . . 8
⊢ ((;;100 · 4) / (;10↑7)) ∈ ℝ |
366 | 279, 365,
355 | lttri 11031 |
. . . . . . 7
⊢ ((((;27 · 4) / (;10↑7)) < ((;;100
· 4) / (;10↑7)) ∧
((;;100 · 4) / (;10↑7)) < ((0._0_0_0_4_2_2_48) /
;10)) → ((;27 · 4) / (;10↑7)) < ((0._0_0_0_4_2_2_48) /
;10)) |
367 | 294, 364,
366 | mp2an 688 |
. . . . . 6
⊢ ((;27 · 4) / (;10↑7)) < ((0._0_0_0_4_2_2_48) /
;10) |
368 | 226 | simpli 483 |
. . . . . . . 8
⊢ (;10↑7) ∈
ℝ |
369 | 273, 368,
277 | redivcli 11672 |
. . . . . . 7
⊢ ((;27 · 4) / (;10↑7)) ∈ ℝ |
370 | 55, 369, 355 | lttri 11031 |
. . . . . 6
⊢
((((log‘(;10↑;27)) / (√‘(;10↑;27))) < ((;27 · 4) / (;10↑7)) ∧ ((;27 · 4) / (;10↑7)) < ((0._0_0_0_4_2_2_48) /
;10)) → ((log‘(;10↑;27)) / (√‘(;10↑;27))) < ((0._0_0_0_4_2_2_48) /
;10)) |
371 | 281, 367,
370 | mp2an 688 |
. . . . 5
⊢
((log‘(;10↑;27)) / (√‘(;10↑;27))) < ((0._0_0_0_4_2_2_48) /
;10) |
372 | 125, 124 | mpbi 229 |
. . . . . 6
⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
373 | | ltmuldiv2 11779 |
. . . . . 6
⊢
((((log‘(;10↑;27)) / (√‘(;10↑;27))) ∈ ℝ ∧ (0._0_0_0_4_2_2_48)
∈ ℝ ∧ (;10 ∈
ℝ ∧ 0 < ;10)) →
((;10 · ((log‘(;10↑;27)) / (√‘(;10↑;27)))) < (0._0_0_0_4_2_2_48)
↔ ((log‘(;10↑;27)) / (√‘(;10↑;27))) < ((0._0_0_0_4_2_2_48) /
;10))) |
374 | 55, 72, 372, 373 | mp3an 1459 |
. . . . 5
⊢ ((;10 · ((log‘(;10↑;27)) / (√‘(;10↑;27)))) < (0._0_0_0_4_2_2_48)
↔ ((log‘(;10↑;27)) / (√‘(;10↑;27))) < ((0._0_0_0_4_2_2_48) /
;10)) |
375 | 371, 374 | mpbir 230 |
. . . 4
⊢ (;10 · ((log‘(;10↑;27)) / (√‘(;10↑;27)))) < (0._0_0_0_4_2_2_48) |
376 | 12, 55 | remulcli 10922 |
. . . . 5
⊢ ((7._3_48) · ((log‘(;10↑;27)) / (√‘(;10↑;27)))) ∈ ℝ |
377 | 18, 55 | remulcli 10922 |
. . . . 5
⊢ (;10 · ((log‘(;10↑;27)) / (√‘(;10↑;27)))) ∈ ℝ |
378 | 376, 377,
72 | lttri 11031 |
. . . 4
⊢
((((7._3_48) · ((log‘(;10↑;27)) / (√‘(;10↑;27)))) < (;10 · ((log‘(;10↑;27)) / (√‘(;10↑;27)))) ∧ (;10 · ((log‘(;10↑;27)) / (√‘(;10↑;27)))) < (0._0_0_0_4_2_2_48))
→ ((7._3_48) · ((log‘(;10↑;27)) / (√‘(;10↑;27)))) < (0._0_0_0_4_2_2_48)) |
379 | 189, 375,
378 | mp2an 688 |
. . 3
⊢ ((7._3_48) · ((log‘(;10↑;27)) / (√‘(;10↑;27)))) < (0._0_0_0_4_2_2_48) |
380 | 379 | a1i 11 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → ((7._3_48)
· ((log‘(;10↑;27)) / (√‘(;10↑;27)))) < (0._0_0_0_4_2_2_48)) |
381 | 47, 57, 73, 162, 380 | lelttrd 11063 |
1
⊢ ((𝑁 ∈ ℕ0
∧ (;10↑;27) ≤ 𝑁) → ((7._3_48)
· ((log‘𝑁) /
(√‘𝑁))) <
(0._0_0_0_4_2_2_48)) |