Proof of Theorem resqrtvalex
| Step | Hyp | Ref
| Expression |
| 1 | | 1nn0 12522 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
| 2 | | 5nn0 12526 |
. . . . . 6
⊢ 5 ∈
ℕ0 |
| 3 | 1, 2 | deccl 12728 |
. . . . 5
⊢ ;15 ∈
ℕ0 |
| 4 | 3 | nn0cni 12518 |
. . . 4
⊢ ;15 ∈ ℂ |
| 5 | | ax-icn 11193 |
. . . . 5
⊢ i ∈
ℂ |
| 6 | | 8cn 12342 |
. . . . 5
⊢ 8 ∈
ℂ |
| 7 | 5, 6 | mulcli 11247 |
. . . 4
⊢ (i
· 8) ∈ ℂ |
| 8 | 4, 7 | addcli 11246 |
. . 3
⊢ (;15 + (i · 8)) ∈
ℂ |
| 9 | | resqrtval 43634 |
. . 3
⊢ ((;15 + (i · 8)) ∈ ℂ
→ (ℜ‘(√‘(;15 + (i · 8)))) =
(√‘(((abs‘(;15 +
(i · 8))) + (ℜ‘(;15 + (i · 8)))) / 2))) |
| 10 | 8, 9 | ax-mp 5 |
. 2
⊢
(ℜ‘(√‘(;15 + (i · 8)))) =
(√‘(((abs‘(;15 +
(i · 8))) + (ℜ‘(;15 + (i · 8)))) / 2)) |
| 11 | | 7nn0 12528 |
. . . . . 6
⊢ 7 ∈
ℕ0 |
| 12 | 3 | nn0rei 12517 |
. . . . . . . 8
⊢ ;15 ∈ ℝ |
| 13 | | 8re 12341 |
. . . . . . . 8
⊢ 8 ∈
ℝ |
| 14 | | absreim 15317 |
. . . . . . . 8
⊢ ((;15 ∈ ℝ ∧ 8 ∈
ℝ) → (abs‘(;15 +
(i · 8))) = (√‘((;15↑2) + (8↑2)))) |
| 15 | 12, 13, 14 | mp2an 692 |
. . . . . . 7
⊢
(abs‘(;15 + (i
· 8))) = (√‘((;15↑2) + (8↑2))) |
| 16 | 4 | sqvali 14203 |
. . . . . . . . . . 11
⊢ (;15↑2) = (;15 · ;15) |
| 17 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ ;15 = ;15 |
| 18 | 4 | mullidi 11245 |
. . . . . . . . . . . . 13
⊢ (1
· ;15) = ;15 |
| 19 | | 1p1e2 12370 |
. . . . . . . . . . . . 13
⊢ (1 + 1) =
2 |
| 20 | | 2nn0 12523 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ0 |
| 21 | 11 | nn0cni 12518 |
. . . . . . . . . . . . . 14
⊢ 7 ∈
ℂ |
| 22 | 2 | nn0cni 12518 |
. . . . . . . . . . . . . 14
⊢ 5 ∈
ℂ |
| 23 | | 7p5e12 12790 |
. . . . . . . . . . . . . 14
⊢ (7 + 5) =
;12 |
| 24 | 21, 22, 23 | addcomli 11432 |
. . . . . . . . . . . . 13
⊢ (5 + 7) =
;12 |
| 25 | 1, 2, 11, 18, 19, 20, 24 | decaddci 12774 |
. . . . . . . . . . . 12
⊢ ((1
· ;15) + 7) = ;22 |
| 26 | 22 | mulridi 11244 |
. . . . . . . . . . . . . . 15
⊢ (5
· 1) = 5 |
| 27 | 26 | oveq1i 7420 |
. . . . . . . . . . . . . 14
⊢ ((5
· 1) + 2) = (5 + 2) |
| 28 | | 5p2e7 12401 |
. . . . . . . . . . . . . 14
⊢ (5 + 2) =
7 |
| 29 | 27, 28 | eqtri 2759 |
. . . . . . . . . . . . 13
⊢ ((5
· 1) + 2) = 7 |
| 30 | | 5t5e25 12816 |
. . . . . . . . . . . . 13
⊢ (5
· 5) = ;25 |
| 31 | 2, 1, 2, 17, 2, 20, 29, 30 | decmul2c 12779 |
. . . . . . . . . . . 12
⊢ (5
· ;15) = ;75 |
| 32 | 3, 1, 2, 17, 2, 11, 25, 31 | decmul1c 12778 |
. . . . . . . . . . 11
⊢ (;15 · ;15) = ;;225 |
| 33 | 16, 32 | eqtri 2759 |
. . . . . . . . . 10
⊢ (;15↑2) = ;;225 |
| 34 | 6 | sqvali 14203 |
. . . . . . . . . . 11
⊢
(8↑2) = (8 · 8) |
| 35 | | 8t8e64 12834 |
. . . . . . . . . . 11
⊢ (8
· 8) = ;64 |
| 36 | 34, 35 | eqtri 2759 |
. . . . . . . . . 10
⊢
(8↑2) = ;64 |
| 37 | 33, 36 | oveq12i 7422 |
. . . . . . . . 9
⊢ ((;15↑2) + (8↑2)) = (;;225 + ;64) |
| 38 | 20, 20 | deccl 12728 |
. . . . . . . . . 10
⊢ ;22 ∈
ℕ0 |
| 39 | | 6nn0 12527 |
. . . . . . . . . 10
⊢ 6 ∈
ℕ0 |
| 40 | | 4nn0 12525 |
. . . . . . . . . 10
⊢ 4 ∈
ℕ0 |
| 41 | | eqid 2736 |
. . . . . . . . . 10
⊢ ;;225 = ;;225 |
| 42 | | eqid 2736 |
. . . . . . . . . 10
⊢ ;64 = ;64 |
| 43 | | eqid 2736 |
. . . . . . . . . . 11
⊢ ;22 = ;22 |
| 44 | 39 | nn0cni 12518 |
. . . . . . . . . . . 12
⊢ 6 ∈
ℂ |
| 45 | | 2cn 12320 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℂ |
| 46 | | 6p2e8 12404 |
. . . . . . . . . . . 12
⊢ (6 + 2) =
8 |
| 47 | 44, 45, 46 | addcomli 11432 |
. . . . . . . . . . 11
⊢ (2 + 6) =
8 |
| 48 | 20, 20, 39, 43, 47 | decaddi 12773 |
. . . . . . . . . 10
⊢ (;22 + 6) = ;28 |
| 49 | | 5p4e9 12403 |
. . . . . . . . . 10
⊢ (5 + 4) =
9 |
| 50 | 38, 2, 39, 40, 41, 42, 48, 49 | decadd 12767 |
. . . . . . . . 9
⊢ (;;225 + ;64) = ;;289 |
| 51 | 1, 11 | deccl 12728 |
. . . . . . . . . . . 12
⊢ ;17 ∈
ℕ0 |
| 52 | 51 | nn0cni 12518 |
. . . . . . . . . . 11
⊢ ;17 ∈ ℂ |
| 53 | 52 | sqvali 14203 |
. . . . . . . . . 10
⊢ (;17↑2) = (;17 · ;17) |
| 54 | | eqid 2736 |
. . . . . . . . . . 11
⊢ ;17 = ;17 |
| 55 | | 9nn0 12530 |
. . . . . . . . . . 11
⊢ 9 ∈
ℕ0 |
| 56 | 1, 1 | deccl 12728 |
. . . . . . . . . . 11
⊢ ;11 ∈
ℕ0 |
| 57 | 52 | mullidi 11245 |
. . . . . . . . . . . 12
⊢ (1
· ;17) = ;17 |
| 58 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ ;11 = ;11 |
| 59 | | 7p1e8 12394 |
. . . . . . . . . . . 12
⊢ (7 + 1) =
8 |
| 60 | 1, 11, 1, 1, 57, 58, 19, 59 | decadd 12767 |
. . . . . . . . . . 11
⊢ ((1
· ;17) + ;11) = ;28 |
| 61 | 21 | mulridi 11244 |
. . . . . . . . . . . . . 14
⊢ (7
· 1) = 7 |
| 62 | 61 | oveq1i 7420 |
. . . . . . . . . . . . 13
⊢ ((7
· 1) + 4) = (7 + 4) |
| 63 | | 7p4e11 12789 |
. . . . . . . . . . . . 13
⊢ (7 + 4) =
;11 |
| 64 | 62, 63 | eqtri 2759 |
. . . . . . . . . . . 12
⊢ ((7
· 1) + 4) = ;11 |
| 65 | | 7t7e49 12827 |
. . . . . . . . . . . 12
⊢ (7
· 7) = ;49 |
| 66 | 11, 1, 11, 54, 55, 40, 64, 65 | decmul2c 12779 |
. . . . . . . . . . 11
⊢ (7
· ;17) = ;;119 |
| 67 | 51, 1, 11, 54, 55, 56, 60, 66 | decmul1c 12778 |
. . . . . . . . . 10
⊢ (;17 · ;17) = ;;289 |
| 68 | 53, 67 | eqtr2i 2760 |
. . . . . . . . 9
⊢ ;;289 = (;17↑2) |
| 69 | 37, 50, 68 | 3eqtri 2763 |
. . . . . . . 8
⊢ ((;15↑2) + (8↑2)) = (;17↑2) |
| 70 | 69 | fveq2i 6884 |
. . . . . . 7
⊢
(√‘((;15↑2) + (8↑2))) = (√‘(;17↑2)) |
| 71 | 51 | nn0ge0i 12533 |
. . . . . . . 8
⊢ 0 ≤
;17 |
| 72 | 51 | nn0rei 12517 |
. . . . . . . . 9
⊢ ;17 ∈ ℝ |
| 73 | 72 | sqrtsqi 15398 |
. . . . . . . 8
⊢ (0 ≤
;17 → (√‘(;17↑2)) = ;17) |
| 74 | 71, 73 | ax-mp 5 |
. . . . . . 7
⊢
(√‘(;17↑2)) = ;17 |
| 75 | 15, 70, 74 | 3eqtri 2763 |
. . . . . 6
⊢
(abs‘(;15 + (i
· 8))) = ;17 |
| 76 | 12, 13 | crrei 15216 |
. . . . . 6
⊢
(ℜ‘(;15 + (i
· 8))) = ;15 |
| 77 | 19 | oveq1i 7420 |
. . . . . . 7
⊢ ((1 + 1)
+ 1) = (2 + 1) |
| 78 | | 2p1e3 12387 |
. . . . . . 7
⊢ (2 + 1) =
3 |
| 79 | 77, 78 | eqtri 2759 |
. . . . . 6
⊢ ((1 + 1)
+ 1) = 3 |
| 80 | 1, 11, 1, 2, 75, 76, 79, 20, 23 | decaddc 12768 |
. . . . 5
⊢
((abs‘(;15 + (i
· 8))) + (ℜ‘(;15
+ (i · 8)))) = ;32 |
| 81 | 80 | oveq1i 7420 |
. . . 4
⊢
(((abs‘(;15 + (i
· 8))) + (ℜ‘(;15
+ (i · 8)))) / 2) = (;32 /
2) |
| 82 | | eqid 2736 |
. . . . . 6
⊢ ;16 = ;16 |
| 83 | 45 | mulridi 11244 |
. . . . . . . 8
⊢ (2
· 1) = 2 |
| 84 | 83 | oveq1i 7420 |
. . . . . . 7
⊢ ((2
· 1) + 1) = (2 + 1) |
| 85 | 84, 78 | eqtri 2759 |
. . . . . 6
⊢ ((2
· 1) + 1) = 3 |
| 86 | | 6t2e12 12817 |
. . . . . . 7
⊢ (6
· 2) = ;12 |
| 87 | 44, 45, 86 | mulcomli 11249 |
. . . . . 6
⊢ (2
· 6) = ;12 |
| 88 | 20, 1, 39, 82, 20, 1, 85, 87 | decmul2c 12779 |
. . . . 5
⊢ (2
· ;16) = ;32 |
| 89 | | 3nn0 12524 |
. . . . . . . 8
⊢ 3 ∈
ℕ0 |
| 90 | 89, 20 | deccl 12728 |
. . . . . . 7
⊢ ;32 ∈
ℕ0 |
| 91 | 90 | nn0cni 12518 |
. . . . . 6
⊢ ;32 ∈ ℂ |
| 92 | 1, 39 | deccl 12728 |
. . . . . . 7
⊢ ;16 ∈
ℕ0 |
| 93 | 92 | nn0cni 12518 |
. . . . . 6
⊢ ;16 ∈ ℂ |
| 94 | | 2ne0 12349 |
. . . . . 6
⊢ 2 ≠
0 |
| 95 | 91, 45, 93, 94 | divmuli 12000 |
. . . . 5
⊢ ((;32 / 2) = ;16 ↔ (2 · ;16) = ;32) |
| 96 | 88, 95 | mpbir 231 |
. . . 4
⊢ (;32 / 2) = ;16 |
| 97 | 40 | nn0cni 12518 |
. . . . . 6
⊢ 4 ∈
ℂ |
| 98 | 97 | sqvali 14203 |
. . . . 5
⊢
(4↑2) = (4 · 4) |
| 99 | | 4t4e16 12812 |
. . . . 5
⊢ (4
· 4) = ;16 |
| 100 | 98, 99 | eqtr2i 2760 |
. . . 4
⊢ ;16 = (4↑2) |
| 101 | 81, 96, 100 | 3eqtri 2763 |
. . 3
⊢
(((abs‘(;15 + (i
· 8))) + (ℜ‘(;15
+ (i · 8)))) / 2) = (4↑2) |
| 102 | 101 | fveq2i 6884 |
. 2
⊢
(√‘(((abs‘(;15 + (i · 8))) + (ℜ‘(;15 + (i · 8)))) / 2)) =
(√‘(4↑2)) |
| 103 | 40 | nn0ge0i 12533 |
. . 3
⊢ 0 ≤
4 |
| 104 | 40 | nn0rei 12517 |
. . . 4
⊢ 4 ∈
ℝ |
| 105 | 104 | sqrtsqi 15398 |
. . 3
⊢ (0 ≤ 4
→ (√‘(4↑2)) = 4) |
| 106 | 103, 105 | ax-mp 5 |
. 2
⊢
(√‘(4↑2)) = 4 |
| 107 | 10, 102, 106 | 3eqtri 2763 |
1
⊢
(ℜ‘(√‘(;15 + (i · 8)))) = 4 |