Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbtbndlem1 Structured version   Visualization version   GIF version

Theorem bgoldbtbndlem1 44749
Description: Lemma 1 for bgoldbtbnd 44753: the odd numbers between 7 and 13 (exclusive) are odd Goldbach numbers. (Contributed by AV, 29-Jul-2020.)
Assertion
Ref Expression
bgoldbtbndlem1 ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 ∈ (7[,)13)) → 𝑁 ∈ GoldbachOdd )

Proof of Theorem bgoldbtbndlem1
StepHypRef Expression
1 7re 11780 . . . . 5 7 ∈ ℝ
21rexri 10750 . . . 4 7 ∈ ℝ*
3 1nn0 11963 . . . . . . 7 1 ∈ ℕ0
4 3nn 11766 . . . . . . 7 3 ∈ ℕ
53, 4decnncl 12170 . . . . . 6 13 ∈ ℕ
65nnrei 11696 . . . . 5 13 ∈ ℝ
76rexri 10750 . . . 4 13 ∈ ℝ*
8 elico1 12835 . . . 4 ((7 ∈ ℝ*13 ∈ ℝ*) → (𝑁 ∈ (7[,)13) ↔ (𝑁 ∈ ℝ* ∧ 7 ≤ 𝑁𝑁 < 13)))
92, 7, 8mp2an 691 . . 3 (𝑁 ∈ (7[,)13) ↔ (𝑁 ∈ ℝ* ∧ 7 ≤ 𝑁𝑁 < 13))
10 7nn 11779 . . . . . . . . . 10 7 ∈ ℕ
1110nnzi 12058 . . . . . . . . 9 7 ∈ ℤ
12 oddz 44575 . . . . . . . . 9 (𝑁 ∈ Odd → 𝑁 ∈ ℤ)
13 zltp1le 12084 . . . . . . . . . 10 ((7 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (7 < 𝑁 ↔ (7 + 1) ≤ 𝑁))
14 7p1e8 11836 . . . . . . . . . . . 12 (7 + 1) = 8
1514breq1i 5043 . . . . . . . . . . 11 ((7 + 1) ≤ 𝑁 ↔ 8 ≤ 𝑁)
1615a1i 11 . . . . . . . . . 10 ((7 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((7 + 1) ≤ 𝑁 ↔ 8 ≤ 𝑁))
17 8re 11783 . . . . . . . . . . . 12 8 ∈ ℝ
1817a1i 11 . . . . . . . . . . 11 (7 ∈ ℤ → 8 ∈ ℝ)
19 zre 12037 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
20 leloe 10778 . . . . . . . . . . 11 ((8 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (8 ≤ 𝑁 ↔ (8 < 𝑁 ∨ 8 = 𝑁)))
2118, 19, 20syl2an 598 . . . . . . . . . 10 ((7 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (8 ≤ 𝑁 ↔ (8 < 𝑁 ∨ 8 = 𝑁)))
2213, 16, 213bitrd 308 . . . . . . . . 9 ((7 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (7 < 𝑁 ↔ (8 < 𝑁 ∨ 8 = 𝑁)))
2311, 12, 22sylancr 590 . . . . . . . 8 (𝑁 ∈ Odd → (7 < 𝑁 ↔ (8 < 𝑁 ∨ 8 = 𝑁)))
24 8nn 11782 . . . . . . . . . . . . . . 15 8 ∈ ℕ
2524nnzi 12058 . . . . . . . . . . . . . 14 8 ∈ ℤ
26 zltp1le 12084 . . . . . . . . . . . . . 14 ((8 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (8 < 𝑁 ↔ (8 + 1) ≤ 𝑁))
2725, 12, 26sylancr 590 . . . . . . . . . . . . 13 (𝑁 ∈ Odd → (8 < 𝑁 ↔ (8 + 1) ≤ 𝑁))
28 8p1e9 11837 . . . . . . . . . . . . . . 15 (8 + 1) = 9
2928breq1i 5043 . . . . . . . . . . . . . 14 ((8 + 1) ≤ 𝑁 ↔ 9 ≤ 𝑁)
3029a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ Odd → ((8 + 1) ≤ 𝑁 ↔ 9 ≤ 𝑁))
31 9re 11786 . . . . . . . . . . . . . . 15 9 ∈ ℝ
3231a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ Odd → 9 ∈ ℝ)
3312zred 12139 . . . . . . . . . . . . . 14 (𝑁 ∈ Odd → 𝑁 ∈ ℝ)
3432, 33leloed 10834 . . . . . . . . . . . . 13 (𝑁 ∈ Odd → (9 ≤ 𝑁 ↔ (9 < 𝑁 ∨ 9 = 𝑁)))
3527, 30, 343bitrd 308 . . . . . . . . . . . 12 (𝑁 ∈ Odd → (8 < 𝑁 ↔ (9 < 𝑁 ∨ 9 = 𝑁)))
36 9nn 11785 . . . . . . . . . . . . . . . . . . 19 9 ∈ ℕ
3736nnzi 12058 . . . . . . . . . . . . . . . . . 18 9 ∈ ℤ
38 zltp1le 12084 . . . . . . . . . . . . . . . . . 18 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
3937, 12, 38sylancr 590 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ Odd → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
40 9p1e10 12152 . . . . . . . . . . . . . . . . . . 19 (9 + 1) = 10
4140breq1i 5043 . . . . . . . . . . . . . . . . . 18 ((9 + 1) ≤ 𝑁10 ≤ 𝑁)
4241a1i 11 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ Odd → ((9 + 1) ≤ 𝑁10 ≤ 𝑁))
43 10re 12169 . . . . . . . . . . . . . . . . . . 19 10 ∈ ℝ
4443a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ Odd → 10 ∈ ℝ)
4544, 33leloed 10834 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ Odd → (10 ≤ 𝑁 ↔ (10 < 𝑁10 = 𝑁)))
4639, 42, 453bitrd 308 . . . . . . . . . . . . . . . 16 (𝑁 ∈ Odd → (9 < 𝑁 ↔ (10 < 𝑁10 = 𝑁)))
47 10nn 12166 . . . . . . . . . . . . . . . . . . . . . . 23 10 ∈ ℕ
4847nnzi 12058 . . . . . . . . . . . . . . . . . . . . . 22 10 ∈ ℤ
49 zltp1le 12084 . . . . . . . . . . . . . . . . . . . . . 22 ((10 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (10 < 𝑁 ↔ (10 + 1) ≤ 𝑁))
5048, 12, 49sylancr 590 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ Odd → (10 < 𝑁 ↔ (10 + 1) ≤ 𝑁))
51 dec10p 12193 . . . . . . . . . . . . . . . . . . . . . . 23 (10 + 1) = 11
5251breq1i 5043 . . . . . . . . . . . . . . . . . . . . . 22 ((10 + 1) ≤ 𝑁11 ≤ 𝑁)
5352a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ Odd → ((10 + 1) ≤ 𝑁11 ≤ 𝑁))
54 1nn 11698 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℕ
553, 54decnncl 12170 . . . . . . . . . . . . . . . . . . . . . . . 24 11 ∈ ℕ
5655nnrei 11696 . . . . . . . . . . . . . . . . . . . . . . 23 11 ∈ ℝ
5756a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ Odd → 11 ∈ ℝ)
5857, 33leloed 10834 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ Odd → (11 ≤ 𝑁 ↔ (11 < 𝑁11 = 𝑁)))
5950, 53, 583bitrd 308 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ Odd → (10 < 𝑁 ↔ (11 < 𝑁11 = 𝑁)))
6055nnzi 12058 . . . . . . . . . . . . . . . . . . . . . . . . . 26 11 ∈ ℤ
61 zltp1le 12084 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((11 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (11 < 𝑁 ↔ (11 + 1) ≤ 𝑁))
6260, 12, 61sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ Odd → (11 < 𝑁 ↔ (11 + 1) ≤ 𝑁))
6351eqcomi 2767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 11 = (10 + 1)
6463oveq1i 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (11 + 1) = ((10 + 1) + 1)
6547nncni 11697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 10 ∈ ℂ
66 ax-1cn 10646 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 ∈ ℂ
6765, 66, 66addassi 10702 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((10 + 1) + 1) = (10 + (1 + 1))
68 1p1e2 11812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (1 + 1) = 2
6968oveq2i 7167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (10 + (1 + 1)) = (10 + 2)
70 dec10p 12193 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (10 + 2) = 12
7169, 70eqtri 2781 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (10 + (1 + 1)) = 12
7264, 67, 713eqtri 2785 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (11 + 1) = 12
7372breq1i 5043 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((11 + 1) ≤ 𝑁12 ≤ 𝑁)
7473a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ Odd → ((11 + 1) ≤ 𝑁12 ≤ 𝑁))
75 2nn 11760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℕ
763, 75decnncl 12170 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 12 ∈ ℕ
7776nnrei 11696 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 12 ∈ ℝ
7877a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ Odd → 12 ∈ ℝ)
7978, 33leloed 10834 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ Odd → (12 ≤ 𝑁 ↔ (12 < 𝑁12 = 𝑁)))
8062, 74, 793bitrd 308 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ Odd → (11 < 𝑁 ↔ (12 < 𝑁12 = 𝑁)))
8176nnzi 12058 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 12 ∈ ℤ
82 zltp1le 12084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (12 < 𝑁 ↔ (12 + 1) ≤ 𝑁))
8381, 12, 82sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ Odd → (12 < 𝑁 ↔ (12 + 1) ≤ 𝑁))
8470eqcomi 2767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 12 = (10 + 2)
8584oveq1i 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (12 + 1) = ((10 + 2) + 1)
86 2cn 11762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2 ∈ ℂ
8765, 86, 66addassi 10702 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((10 + 2) + 1) = (10 + (2 + 1))
88 2p1e3 11829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (2 + 1) = 3
8988oveq2i 7167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (10 + (2 + 1)) = (10 + 3)
90 dec10p 12193 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (10 + 3) = 13
9189, 90eqtri 2781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (10 + (2 + 1)) = 13
9285, 87, 913eqtri 2785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (12 + 1) = 13
9392breq1i 5043 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((12 + 1) ≤ 𝑁13 ≤ 𝑁)
9493a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ Odd → ((12 + 1) ≤ 𝑁13 ≤ 𝑁))
956a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ Odd → 13 ∈ ℝ)
9695, 33lenltd 10837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ Odd → (13 ≤ 𝑁 ↔ ¬ 𝑁 < 13))
9783, 94, 963bitrd 308 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ Odd → (12 < 𝑁 ↔ ¬ 𝑁 < 13))
98 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑁 < 13 → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd ))
9997, 98syl6bi 256 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ Odd → (12 < 𝑁 → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
10099com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (12 < 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
101 eleq1 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (12 = 𝑁 → (12 ∈ Odd ↔ 𝑁 ∈ Odd ))
102 6p6e12 12224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (6 + 6) = 12
103 6even 44655 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6 ∈ Even
104 epee 44649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((6 ∈ Even ∧ 6 ∈ Even ) → (6 + 6) ∈ Even )
105103, 103, 104mp2an 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (6 + 6) ∈ Even
106102, 105eqeltrri 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 12 ∈ Even
107 evennodd 44587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (12 ∈ Even → ¬ 12 ∈ Odd )
108106, 107ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ¬ 12 ∈ Odd
109108pm2.21i 119 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (12 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd ))
110101, 109syl6bir 257 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (12 = 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
111100, 110jaoi 854 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((12 < 𝑁12 = 𝑁) → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
112111com12 32 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ Odd → ((12 < 𝑁12 = 𝑁) → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
11380, 112sylbid 243 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ Odd → (11 < 𝑁 → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
114113com12 32 . . . . . . . . . . . . . . . . . . . . . 22 (11 < 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
115 11gbo 44719 . . . . . . . . . . . . . . . . . . . . . . . 24 11 ∈ GoldbachOdd
116 eleq1 2839 . . . . . . . . . . . . . . . . . . . . . . . 24 (11 = 𝑁 → (11 ∈ GoldbachOdd ↔ 𝑁 ∈ GoldbachOdd ))
117115, 116mpbii 236 . . . . . . . . . . . . . . . . . . . . . . 23 (11 = 𝑁𝑁 ∈ GoldbachOdd )
1181172a1d 26 . . . . . . . . . . . . . . . . . . . . . 22 (11 = 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
119114, 118jaoi 854 . . . . . . . . . . . . . . . . . . . . 21 ((11 < 𝑁11 = 𝑁) → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
120119com12 32 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ Odd → ((11 < 𝑁11 = 𝑁) → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
12159, 120sylbid 243 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ Odd → (10 < 𝑁 → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
122121com12 32 . . . . . . . . . . . . . . . . . 18 (10 < 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
123 eleq1 2839 . . . . . . . . . . . . . . . . . . 19 (10 = 𝑁 → (10 ∈ Odd ↔ 𝑁 ∈ Odd ))
124 5p5e10 12221 . . . . . . . . . . . . . . . . . . . . . 22 (5 + 5) = 10
125 5odd 44654 . . . . . . . . . . . . . . . . . . . . . . 23 5 ∈ Odd
126 opoeALTV 44627 . . . . . . . . . . . . . . . . . . . . . . 23 ((5 ∈ Odd ∧ 5 ∈ Odd ) → (5 + 5) ∈ Even )
127125, 125, 126mp2an 691 . . . . . . . . . . . . . . . . . . . . . 22 (5 + 5) ∈ Even
128124, 127eqeltrri 2849 . . . . . . . . . . . . . . . . . . . . 21 10 ∈ Even
129 evennodd 44587 . . . . . . . . . . . . . . . . . . . . 21 (10 ∈ Even → ¬ 10 ∈ Odd )
130128, 129ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ¬ 10 ∈ Odd
131130pm2.21i 119 . . . . . . . . . . . . . . . . . . 19 (10 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd ))
132123, 131syl6bir 257 . . . . . . . . . . . . . . . . . 18 (10 = 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
133122, 132jaoi 854 . . . . . . . . . . . . . . . . 17 ((10 < 𝑁10 = 𝑁) → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
134133com12 32 . . . . . . . . . . . . . . . 16 (𝑁 ∈ Odd → ((10 < 𝑁10 = 𝑁) → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
13546, 134sylbid 243 . . . . . . . . . . . . . . 15 (𝑁 ∈ Odd → (9 < 𝑁 → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
136135com12 32 . . . . . . . . . . . . . 14 (9 < 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
137 9gbo 44718 . . . . . . . . . . . . . . . 16 9 ∈ GoldbachOdd
138 eleq1 2839 . . . . . . . . . . . . . . . 16 (9 = 𝑁 → (9 ∈ GoldbachOdd ↔ 𝑁 ∈ GoldbachOdd ))
139137, 138mpbii 236 . . . . . . . . . . . . . . 15 (9 = 𝑁𝑁 ∈ GoldbachOdd )
1401392a1d 26 . . . . . . . . . . . . . 14 (9 = 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
141136, 140jaoi 854 . . . . . . . . . . . . 13 ((9 < 𝑁 ∨ 9 = 𝑁) → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
142141com12 32 . . . . . . . . . . . 12 (𝑁 ∈ Odd → ((9 < 𝑁 ∨ 9 = 𝑁) → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
14335, 142sylbid 243 . . . . . . . . . . 11 (𝑁 ∈ Odd → (8 < 𝑁 → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
144143com12 32 . . . . . . . . . 10 (8 < 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
145 eleq1 2839 . . . . . . . . . . 11 (8 = 𝑁 → (8 ∈ Odd ↔ 𝑁 ∈ Odd ))
146 8even 44657 . . . . . . . . . . . . 13 8 ∈ Even
147 evennodd 44587 . . . . . . . . . . . . 13 (8 ∈ Even → ¬ 8 ∈ Odd )
148146, 147ax-mp 5 . . . . . . . . . . . 12 ¬ 8 ∈ Odd
149148pm2.21i 119 . . . . . . . . . . 11 (8 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd ))
150145, 149syl6bir 257 . . . . . . . . . 10 (8 = 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
151144, 150jaoi 854 . . . . . . . . 9 ((8 < 𝑁 ∨ 8 = 𝑁) → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
152151com12 32 . . . . . . . 8 (𝑁 ∈ Odd → ((8 < 𝑁 ∨ 8 = 𝑁) → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
15323, 152sylbid 243 . . . . . . 7 (𝑁 ∈ Odd → (7 < 𝑁 → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
154153imp 410 . . . . . 6 ((𝑁 ∈ Odd ∧ 7 < 𝑁) → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd ))
155154com12 32 . . . . 5 (𝑁 < 13 → ((𝑁 ∈ Odd ∧ 7 < 𝑁) → 𝑁 ∈ GoldbachOdd ))
1561553ad2ant3 1132 . . . 4 ((𝑁 ∈ ℝ* ∧ 7 ≤ 𝑁𝑁 < 13) → ((𝑁 ∈ Odd ∧ 7 < 𝑁) → 𝑁 ∈ GoldbachOdd ))
157156com12 32 . . 3 ((𝑁 ∈ Odd ∧ 7 < 𝑁) → ((𝑁 ∈ ℝ* ∧ 7 ≤ 𝑁𝑁 < 13) → 𝑁 ∈ GoldbachOdd ))
1589, 157syl5bi 245 . 2 ((𝑁 ∈ Odd ∧ 7 < 𝑁) → (𝑁 ∈ (7[,)13) → 𝑁 ∈ GoldbachOdd ))
1591583impia 1114 1 ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 ∈ (7[,)13)) → 𝑁 ∈ GoldbachOdd )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5036  (class class class)co 7156  cr 10587  0cc0 10588  1c1 10589   + caddc 10591  *cxr 10725   < clt 10726  cle 10727  2c2 11742  3c3 11743  5c5 11745  6c6 11746  7c7 11747  8c8 11748  9c9 11749  cz 12033  cdc 12150  [,)cico 12794   Even ceven 44568   Odd codd 44569   GoldbachOdd cgbo 44691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-2o 8119  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-rp 12444  df-ico 12798  df-fz 12953  df-seq 13432  df-exp 13493  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-dvds 15669  df-prm 16082  df-even 44570  df-odd 44571  df-gbo 44694
This theorem is referenced by:  bgoldbtbnd  44753
  Copyright terms: Public domain W3C validator